Self-limiting growth of zinc oxide was accomplished over a temperature range from 25to155°C by pulsed plasma-enhanced chemical vapor deposition using dimethyl zinc [Zn(CH3)2] as the metal precursor. The deposition rate was independent of plasma exposure (15s) but was found to increase from 1.4to6.0Åcycle as a function of temperature. Over the narrow range explored, substrate temperature had a dramatic impact on the film structure and properties. Amorphous films were obtained at room temperature, while a polycrystalline morphology with a preferred (100) orientation developed as the temperature increased. The electrical resistivity decreased linearly with temperature from 45to2Ωcm. Spectroscopic characterization showed that films deposited at room temperature were contaminated by carbon and hydroxyl impurities; however, these defects were attenuated with temperature and were not detected in films deposited above 64°C. Room temperature photoluminescence was dominated by defect emission in most films; however, this signal was attenuated, and a strong band edge emission was observed for films deposited at temperatures >135°C. Film quality was comparable to material grown by plasma-enhanced atomic layer deposition in the same reactor; however, precursor requirements and net deposition rates were improved by an order of magnitude.

1.
Ü.
Özgür
,
Y. I.
Alivov
,
C.
Liu
,
A.
Teke
,
M. A.
Reshchikov
,
S.
Dogan
,
V.
Avrutin
,
S. J.
Cho
, and
H.
Morkoc
,
J. Appl. Phys.
98
,
041301
(
2005
).
2.
R.
Groenen
,
J.
Loffler
,
P. M.
Sommeling
,
J. L.
Linden
,
E. A. G.
Hamers
,
R. E. I.
Schropp
, and
M. C. M.
van de Sanden
,
Thin Solid Films
392
,
226
(
2001
).
3.
J. H. L.
Stolt
,
J.
Kessler
,
M.
Ruckh
,
K.-O.
Velthaus
, and
H.-W.
Schock
,
Appl. Phys. Lett.
62
,
597
(
1993
).
4.
X. L.
Guo
,
J. H.
Choi
,
H.
Tabata
, and
T.
Kawai
,
Jpn. J. Appl. Phys., Part 2
40
,
L177
(
2001
).
5.
M. H.
Huang
,
S.
Mao
,
H.
Feick
,
H.
Yan
,
Y.
Wu
,
H.
Kind
,
E.
Weber
,
R.
Russo
, and
P.
Yang
,
Science
292
,
1897
(
2001
).
6.
S.
Masuda
,
K.
Kitamura
,
Y.
Okumura
,
S.
Miyatake
,
H.
Tabata
, and
T.
Kawai
,
J. Appl. Phys.
93
,
1624
(
2003
).
7.
R. L.
Hoffman
,
B. J.
Norris
, and
J. F.
Wager
,
Appl. Phys. Lett.
82
,
733
(
2003
).
8.
P. F.
Carcia
,
R. S.
McLean
, and
M. H.
Reilly
,
Appl. Phys. Lett.
88
,
123509
(
2006
).
9.
S. J.
Lim
,
S. J.
Kwon
,
H.
Kim
, and
J. S.
Park
,
Appl. Phys. Lett.
91
,
183517
(
2007
).
10.
T.
Minami
,
H.
Nanto
,
S.
Shooji
, and
S.
Takata
,
Thin Solid Films
111
,
167
(
1984
).
11.
J. N.
Duenow
,
T. A.
Gessert
,
D. M.
Wood
,
T. M.
Barnes
,
M.
Young
,
B.
To
, and
T. J.
Coutts
,
J. Vac. Sci. Technol. A
25
,
955
(
2007
).
12.
J. J.
Robbins
,
J.
Harvey
,
J.
Leaf
,
C.
Fry
, and
C. A.
Wolden
,
Thin Solid Films
473
,
35
(
2005
).
13.
V.
Lujala
,
J.
Skarp
,
M.
Tammenmaa
, and
T.
Suntola
,
Appl. Surf. Sci.
82–83
,
34
(
1994
).
14.
A. W.
Ott
and
R. P. H.
Chang
,
Mater. Chem. Phys.
58
,
132
(
1999
).
15.
E. B.
Yousfi
,
J.
Fouache
, and
D.
Lincot
,
Appl. Surf. Sci.
153
,
223
(
2000
).
16.
E.
Guziewicz
 et al,
J. Appl. Phys.
103
,
033515
(
2008
).
17.
J. W.
Elam
,
D.
Routkevitch
, and
S. M.
George
,
J. Electrochem. Soc.
150
,
G339
(
2003
).
18.
P. C.
Rowlette
,
C. G.
Allen
,
O. B.
Bromley
,
A. E.
Dubetz
, and
C. A.
Wolden
,
Chem. Vap. Deposition
15
,
15
(
2009
).
19.
M.
Seman
,
J. J.
Robbins
,
S.
Agarwal
, and
C. A.
Wolden
,
Appl. Phys. Lett.
90
,
131504
(
2007
).
20.
M. T.
Seman
,
J. J.
Robbins
,
D.
Leonhardt
,
S.
Agarwal
, and
C. A.
Wolden
,
J. Electrochem. Soc.
155
,
J168
(
2008
).
21.
S. F.
Szymanski
,
M. T.
Seman
, and
C. A.
Wolden
,
Surf. Coat. Technol.
201
,
8991
(
2007
).
22.
S. F.
Szymanski
,
P.
Rowlette
, and
C. A.
Wolden
,
J. Vac. Sci. Technol. A
26
,
1079
(
2008
).
23.
M. T.
Seman
,
D. N.
Richards
,
P. C.
Rowlette
,
N. G.
Kubala
, and
C. A.
Wolden
,
J. Vac. Sci. Technol. A
26
,
1213
(
2008
).
24.
M. T.
Seman
,
D. N.
Richards
,
P.
Rowlette
, and
C. A.
Wolden
,
Chem. Vap. Deposition
14
,
296
(
2008
).
25.
J. J.
Robbins
,
J.
Esteban
,
C.
Fry
, and
C. A.
Wolden
,
J. Electrochem. Soc.
150
,
C693
(
2003
).
26.
S. D.
Hersee
and
J. M.
Ballingall
,
J. Vac. Sci. Technol. A
8
,
800
(
1990
).
27.
A.
Yamada
,
B.
Sang
, and
M.
Konagai
,
Appl. Surf. Sci.
112
,
216
(
1997
).
28.
S. H. K.
Park
,
C. S.
Hwang
,
H. S.
Kwack
,
J. H.
Lee
, and
H. Y.
Chu
,
Electrochem. Solid-State Lett.
9
,
G299
(
2006
).
29.
S. K.
Kim
,
C. S.
Hwang
,
S. H. K.
Park
, and
S. J.
Yun
,
Thin Solid Films
478
,
103
(
2005
).
30.
C. R.
Otterman
,
K.
Bange
,
W.
Wagner
,
M.
Laube
, and
F.
Rauch
,
Surf. Interface Anal.
19
,
435
(
1992
).
31.
V.
Ischenko
,
S.
Polarz
,
D.
Grote
,
V.
Stavarache
,
K.
Fink
, and
M.
Driess
,
Adv. Funct. Mater.
15
,
1945
(
2005
).
32.
J.
Lim
and
C.
Lee
,
Thin Solid Films
515
,
3335
(
2007
).
33.
X.
Yang
,
G.
Du
,
X.
Wang
,
J.
Wang
,
B.
Liu
,
Y.
Zhang
,
D.
Liu
,
D.
Liu
,
H. C.
Ong
, and
S.
Yang
,
J. Cryst. Growth
252
,
275
(
2003
).
34.
S. W.
Jung
,
W. I.
Park
,
H. D.
Cheong
,
G.-C.
Yi
,
H. M.
Jang
,
S.
Hong
, and
T.
Joo
,
Appl. Phys. Lett.
80
,
1924
(
2002
).
35.
K.
Vanheusden
,
W. L.
Warren
,
C. H.
Seager
,
D. R.
Tallant
,
J. A.
Voigt
, and
B. E.
Gnade
,
J. Appl. Phys.
79
,
7983
(
1996
).
36.
S. A.
Studenikin
,
N.
Golego
, and
M.
Cocivera
,
J. Appl. Phys.
84
,
2287
(
1998
).
37.
A. F.
Kohan
,
G.
Ceder
,
D.
Morgan
, and
C. G.
Van de Walle
,
Phys. Rev. B
61
,
15019
(
2000
).
38.
H. J.
Egelhaaf
and
D.
Oelkrug
,
J. Cryst. Growth
161
,
190
(
1996
).
39.
N.
Huby
,
S.
Ferrari
,
E.
Guziewicz
,
M.
Godlewski
, and
V.
Osinniy
,
Appl. Phys. Lett.
92
,
023502
(
2008
).
You do not currently have access to this content.