Alumina films were prepared by radio frequency magnetron sputtering from an aluminum oxide target on an indium tin oxide covered glass. The purpose of the study was to test the influence of the sputter parameters on the elemental composition, surface morphology, and electrical insulation properties (breakdown fields and leakage currents). Tested parameters were the sputter gas (Ar) pressure, the sputter rate, the sputter power, the sputter gas composition (Ar:O2), the conditioning of the target, the residual base pressure, and the substrate temperature. The surface morphology of the films was investigated by atomic force microscopy. Depth profiles of the elemental compositions were measured by elastic recoil detection using energetic heavy ions, and the insulation properties were investigated by current voltage measurements and impedance spectroscopy. The main finding is that the leakage currents increase by about five orders of magnitude, if the atomic ratio of O:Al increases from 1.35 to 2.0. In parallel the breakdown fields decrease by a factor of 100, and the character of the breakdowns changes from soft to hard. The highest breakdown fields (2.4MVcm) and smallest leakage currents (6.5×108Acm2 at 2.0MVcm) are obtained for slightly Al rich films with small atomic concentrations of H (<0.5at.%). These films were sputtered in pure Ar and under the lowest possible pressure of the residual gas.

1.
A.
Facchetti
,
M.-H.
Yoon
, and
T. J.
Marks
,
Adv. Mater. (Weinheim, Ger.)
17
,
1705
(
2005
).
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
J. Appl. Phys.
89
,
5243
(
2001
).
3.
J. B.
Kim
,
D. R.
Kwon
,
K.
Chakrabarti
,
C.
Lee
, and
K. Y.
Oh
,
J. Appl. Phys.
92
,
6739
(
2002
).
4.
M. D.
Groner
,
J. W.
Elam
,
F. H.
Fabreguette
, and
S. M.
George
,
Thin Solid Films
413
,
186
(
2002
).
5.
S.
Goettling
,
J.
Brill
,
N.
Fruehauf
,
J.
Pflaum
, and
E.
Margallo-Balbás
,
Proc. SPIE
5940
,
594010
(
2005
).
6.
L. A.
Majewski
,
R.
Schroeder
, and
M.
Grell
,
J. Phys. D
37
,
21
(
2004
).
7.
A.
Ortiz
,
J. C.
Alonso
,
V.
Pankov
,
A.
Huanosta
, and
E.
Andrade
,
Thin Solid Films
368
,
74
(
2000
).
8.
M.
Aguilar-Frutis
,
M.
Garcia
, and
C.
Falcony
,
Appl. Phys. Lett.
72
,
1700
(
1998
).
9.
J.
Kolodzey
,
E. A.
Chowdhury
,
T. N.
Adam
,
G.
Qui
,
I.
Rau
,
J. O.
Olowolafe
,
J. S.
Suehle
, and
Y.
Chen
,
IEEE Trans. Electron Devices
47
,
121
(
2000
).
10.
J. M.
Schneider
,
A.
Anders
,
B.
Hjörvarsson
,
I.
Petrov
,
K.
Macák
,
U.
Helmersson
, and
J.-E.
Sundgren
,
Appl. Phys. Lett.
74
,
200
(
1999
).
11.
J. M.
Schneider
,
K.
Larsson
,
J.
Lu
,
E.
Olsson
, and
B.
Hjörvarsson
,
Appl. Phys. Lett.
80
,
1144
(
2002
).
12.
S.
Sellner
,
A.
Gerlach
,
S.
Kowarik
,
F.
Schreiber
,
H.
Dosch
,
S.
Meyer
,
J.
Pflaum
, and
G.
Ulbricht
,
Thin Solid Films
516
,
6377
(
2008
).
13.
T.
Seino
and
T.
Sato
,
J. Vac. Sci. Technol. A
20
,
634
(
2002
).
14.
J.
Lee
,
S. S.
Kim
, and
S.
Im
,
J. Vac. Sci. Technol. B
21
,
953
(
2003
).
15.
16.
C. S.
Bhatia
,
G.
Guthmiller
, and
A. M.
Spool
,
J. Vac. Sci. Technol. A
7
,
1298
(
1989
).
17.
R. S.
Nowicki
,
J. Vac. Sci. Technol.
14
,
127
(
1977
).
18.
B. G.
Segda
,
M.
Jacquet
, and
J. P.
Besse
,
Vacuum
62
,
27
(
2001
).
19.
W. H.
Ha
,
M. H.
Choo
, and
S.
Im
,
J. Non-Cryst. Solids
303
,
78
(
2002
).
20.
C. A. T.
Salama
,
J. Electrochem. Soc.
117
,
913
(
1970
).
21.
C. A. T.
Salama
,
J. Electrochem. Soc.
118
,
1993
(
1971
).
22.
T. A.
Mäntylä
,
P. J. M.
Vuoristo
,
A. K.
Telama
, and
P. O.
Kettunen
,
Thin Solid Films
126
,
43
(
1985
).
23.
P.
Vuoristo
,
T.
Mäntylä
,
P.
Kettunen
, and
R.
Lappalainen
,
Thin Solid Films
204
,
297
(
1991
).
24.
P. J.
Kelley
and
R. D.
Arnell
,
J. Vac. Sci. Technol. A
17
,
945
(
1999
).
25.
M. K.
Olsson
,
K.
Macák
,
U.
Helmersson
, and
B.
Hjörvarsson
,
J. Vac. Sci. Technol. A
16
,
639
(
1998
).
26.
K.
Koski
,
J.
Hölsä
, and
P.
Juliet
,
Thin Solid Films
339
,
240
(
1999
).
27.
J.
Suñé
and
E.
Wu
,
Solid-State Electron.
46
,
1825
(
2002
).
28.
J.
Suñé
and
E. Y.
Wu
,
Phys. Rev. Lett.
92
,
087601
(
2004
).
29.
P. E.
Blöchl
and
J. H.
Stathis
,
Phys. Rev. Lett.
83
,
372
(
1999
).
30.
M.
Shatzkes
,
M.
Av-Ron
, and
R. A.
Gdula
,
IBM J. Res. Dev.
24
,
469
(
1980
).
31.
M.
Voigt
and
M.
Sokolowski
,
Mater. Sci. Eng., B
109
,
99
(
2004
).
33.
A.
Bergmaier
, Dissertation,
Technische Universität München
,
1999
.
34.
M.
Bruns
,
S.
Dosenbach
,
U.
Geckle
,
H.
Klewe-Nebenius
,
H.
Lutz
,
E.
William
, and
H. J.
Ache
, Wissenschaftliche Berichte FZKA 5852, Forschungszentrum Karlsruhe (
1996
).
35.
J. A.
Thornton
,
J. Vac. Sci. Technol. A
4
,
3059
(
1986
).
36.
J.
Sun
and
S. L.
Simon
,
Thermochim. Acta
463
,
32
(
2007
).
37.
I.
Gomez-Morilla
,
C. J.
Sofield
,
G. W.
Grime
, and
R.
Gwilliam
,
J. Micromech. Microeng.
15
,
698
(
2005
).
38.
K. C.
Kao
and
W.
Hwang
,
Electrical Transport in Solids With Particular Reference to Organic Semiconductors
(
Pergamon
,
Oxford
,
1981
).
39.
D. S.
Jeong
and
C. S.
Hwang
,
J. Appl. Phys.
98
,
113701
(
2005
).
40.
J. P.
Chang
and
Y.-S.
Lin
,
Appl. Phys. Lett.
79
,
3666
(
2001
).
42.
Q.
Li
,
Y.-H.
Yu
,
C. S.
Bhatia
,
L. D.
Marks
,
S. C.
Lee
, and
Y. W.
Chung
,
J. Vac. Sci. Technol. A
18
,
2333
(
2000
).
43.
Q.
Li
,
Y.-H.
Yu
,
C. S.
Bhatia
,
L. D.
Marks
,
S. C.
Lee
, and
Y. W.
Chung
,
J. Vac. Sci. Technol. A
18
,
2333
(
2000
).
44.
J. M.
Schneider
,
W. D.
Sproul
,
A. A.
Voevodin
, and
A.
Matthews
,
J. Vac. Sci. Technol. A
15
,
1084
(
1997
).
45.
T. C.
Chou
,
D.
Adamson
,
J.
Mardinly
, and
T. G.
Nieh
,
Thin Solid Films
205
,
131
(
1991
).
46.
J.
Rosén
,
S.
Mráz
,
U.
Kreissig
,
D.
Music
, and
J. M.
Schneider
,
Plasma Chem. Plasma Process.
25
,
303
(
2005
).
47.
B. G.
Segda
,
M.
Jacquet
,
C.
Caapera
,
G.
Baud
, and
J. P.
Besse
,
Nucl. Instrum. Methods Phys. Res. B
170
,
105
(
2000
).
48.
G.
Yip
,
J.
Qiu
,
W. T.
Ng
, and
Z. H.
Lu
,
Appl. Phys. Lett.
92
,
122911
(
2008
).
49.
C.-W.
Jeong
,
B.-i.
Lee
, and
S.-K.
Joo
,
Mater. Sci. Eng., C
16
,
59
(
2001
).
You do not currently have access to this content.