Silicon nitride films were synthesized at 170°C by using inductively coupled plasma chemical vapor deposition under three microwave power conditions of 500, 800, and 1000W. The chemical, physical and electrical properties of the deposited silicon nitride films were characterized by Fourier transform infrared, wet etching, atomic force microscopy, ellipsometry, J-V, and C-V measurements of metal-insulator-semiconductor. The microwave power for film deposition is found to play an important role at the films’ properties. A high microwave power reduces the retention of hydrogen in a form of Si–H and N–H atomic bonds. The microwave power significantly affects the density of pin holes; the 800W film has the lowest density of pin holes. In general, the low-temperature silicon nitride films possess better surface roughness than the conventional silicon nitride films produced at higher temperatures. The low-temperature silicon nitride films exhibit an abrupt breakdown, a characteristic of avalanche breakdown. The variation in breakdown strength is correlated with the change in pin-hole density, and the 800W silicon nitride film possesses the highest breakdown strength. The microwave power has limited influences on leakage current and resistivity of the films. All the low-temperature silicon nitride films are characterized by high-density fixed charges and interface charge traps, of which both densities vary slightly with the microwave power for film deposition.

1.
A.
Heya
,
T.
Niki
,
M.
Takano
,
Y.
Yonezawa
,
T.
Minamikawa
,
S.
Muroi
,
S.
Minami
,
A.
Izumi
,
A.
Masuda
,
H.
Umemoto
, and
H.
Matsumura
,
Jpn. J. Appl. Phys., Part 2
V43
,
L1546
(
2004
).
2.
M.
Takano
,
T.
Niki
,
A.
Heya
,
T.
Osono
,
Y.
Yonezawa
,
T.
Minamikawa
,
S.
Muroi
,
S.
Minami
,
A.
Masuda
,
H.
Umemoto
, and
H.
Matsumura
,
Jpn. J. Appl. Phys., Part 2
V44
,
4098
(
2005
).
3.
W.
Huang
,
X.
Wang
,
M.
Sheng
,
L.
Xu
,
F.
Stubhan
,
L.
Luo
,
T.
Feng
,
X.
Wang
,
F.
Zhang
, and
S. G.
Zou
,
Mater. Sci. Eng., B
98
,
248
(
2003
).
4.
A.
Sazonov
,
D.
Striakhilev
,
C.-H.
Lee
, and
A.
Nathan
,
Proc. IEEE
93
,
1420
(
2005
).
5.
Z.
Jin
,
W.
Prost
,
S.
Neumann
, and
F.-J.
Tegude
,
J. Appl. Phys.
96
,
777
(
2004
).
6.
J. W.
Lee
,
K.
Mackenzie
,
D.
Johnson
,
R. J.
Shul
,
S. J.
Pearton
, and
F.
Ren
,
Solid-State Electron.
42
,
1031
(
1998
).
7.
J. W.
Lee
,
K. D.
Mackenzie
,
D.
Johnson
,
R. J.
Shul
,
S. J.
Pearton
,
C. R.
Abernathy
, and
F.
Ren
,
Solid-State Electron.
42
,
1021
(
1998
).
8.
J. W.
Lee
,
K. D.
Mackenzie
,
D.
Johnson1
,
R. J.
Shul
,
S. J.
Pearton
,
C. R.
Abernathy
, and
F.
Ren
,
Solid-State Electron.
42
,
1027
(
1998
).
9.
Z.
Jin
,
S.
Neumann
,
W.
Prost
, and
F.-J.
Tegude
,
Solid-State Electron.
49
,
409
(
2005
).
10.
P.
Gammel
,
G.
Fischer
, and
J.
Bouchaud
, Bell Labs Tech. J. 10,
29
(
2005
).
11.
C. H.
Chang
,
J. Y.
Qian
,
B. A.
Cetiner
,
Q.
Xu
,
M.
Bachman
,
H. K.
Kim
,
Y.
Ra
,
F.
De Flaviis
, and
G. P.
Li
,Microwave Symposium Digest, 2002 IEEE MTT-S International, Seattle, WA,
2002
, p.
231
234
.
12.
J. M.
Lackner
,
W.
Waldhauser
,
R.
Ebner
,
M.
Beutl
,
G.
Jakopic
,
G.
Leising
,
H.
Hutter
, and
M.
Rosner
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1525
(
2004
).
13.
S. B.
Patil
,
A.
Kumbhar
,
P.
Waghmare
,
V.
Ramgopal Rao
, and
R. O.
Dusane
,
Thin Solid Films
395
,
270
(
2001
).
14.
H.
Sato
,
A.
Izumi
,
A.
Masuda
, and
H.
Matsumura
,
Thin Solid Films
395
,
280
(
2001
).
15.
S.
Garcia
,
J. M.
Martin
,
I.
Martil
,
M.
Fernandez
, and
G.
Gonzalez-Diaz
,
Thin Solid Films
317
,
116
(
1998
).
16.
A. J.
Flewitt
,
A. P.
Dyson
,
J.
Robertson
, and
W. I.
Milne
,
Thin Solid Films
383
,
172
(
2001
).
17.
S.
Bae
,
D. G.
Farber
, and
S. J.
Fonash
,
Solid-State Electron.
44
,
1355
(
2000
).
18.
F.
Delmotte
,
M. C.
Hugon
,
B.
Agius
, and
J. L.
Courant
,
J. Vac. Sci. Technol. B
15
,
1919
(
1997
).
19.
M. C.
Hugon
,
F.
Delmotte
,
B.
Agius
, and
J. L.
Courant
,
J. Vac. Sci. Technol. A
15
,
3143
(
1997
).
20.
F. S.
Pool
,
J. Appl. Phys.
81
,
2839
(
1997
).
21.
G. I.
Isai
,
J.
Holleman
,
H.
Wallinga
, and
P. H.
Woerlee
,
J. Electrochem. Soc.
151
,
C649
(
2004
).
22.
L.
da Silva Zamboma
and
R. D.
Mansano
,
Vacuum
71
,
439
(
2003
).
23.
R. S.
Muller
and
T. I.
Kamins
,
Device Electronics for Integrated Circuits
, 2nd ed. (
Wiley
,
New York
,
1986
).
24.
E. H.
Nicollian
and
J. R.
Brews
,
MOS (Metal Oxide Semiconductor) Physics and Technology
(
Wiley
,
New York
,
1982
).
25.
S. M.
Sze
,
Physics of Semiconductor Devices
, 2nd ed. (
Wiley
,
New York
,
1981
).
26.
W. D.
Callister
 Jr.
,
Materials Science and Engineering, an Introduction
, 7th ed. (
Wiley
,
New York
,
2007
).
27.
S. B.
Patil
,
A.
Kumbhar
,
P.
Waghmare
,
V.
Ramgopal Rao
, and
R. O.
Dusane
,
Thin Solid Films
395
,
270
(
2001
).
28.
M.
Arps
and
A.
Markwitz
,
J. Vac. Sci. Technol. A
15
,
1864
(
1997
).
You do not currently have access to this content.