During the magnetron sputtering from an indium-tin oxide (ITO) target (76mm diameter) we measured the ion-distribution functions (IDFs) of energetic ions (argon, indium, and oxygen ions) at the substrate surface using a combination of a quadrupole mass spectrometer and an electrostatic energy analyzer. We obtained the IDFs for argon sputtering pressures in the range from 0.08to2Pa and for dc as well as rf (13.56MHz) plasma excitation with powers from 10to100W. The IDF measurements were performed both over the target center at a target-to-substrate distance of 65mm and at different positions along the target radius in order to scan the erosion track of the target. The mean kinetic energies of argon ions calculated from the IDFs in the dc plasma decreased from about 30to15eV, when the argon pressure increased from 0.08to2Pa, which is caused by a decrease of the electron temperature also by a factor of 2. Indium atoms exhibit higher mean energies due to their additional energy from the sputtering process. The total metal ion flux turns out to be proportional to the discharge power and the pressure, the latter dependence being due to Penning ionization of the metal atoms (In and Sn). From the scans across the target surface the lateral distributions of metal, oxygen, and argon ions were derived. In the dc discharge the position of the erosion track is reproduced by increased ion intensities, while it is not the case for the rf excited plasma. The lateral variations of the observed species do not influence the lateral resistivity distributions of the deposited ITO films.

1.
H. L.
Hartnagel
,
A. L.
Dawar
,
A. K.
Jain
, and
C.
Jagadish
,
Semiconducting Transparent Thin Films
(
Institute of Physics
,
Bristol
,
1995
).
2.
T.
Minami
,
MRS Bull.
25
,
38
(
2000
).
4.
R.
Herrmann
and
G.
Bräuer
, in
Thin Films for Optical Coatings
,
Handbook of Optical Properties
, edited by
R. E.
Hummel
and
K. H.
Guenther
(
CRC
,
Boca Raton
,
1995
), Vol.
1
, pp.
135
187
.
5.
P. K.
Song
,
Y.
Shigesato
,
I.
Yasui
,
C. W.
Ow-Yang
, and
D. C.
Paine
,
Jpn. J. Appl. Phys., Part 1
37
,
1870
(
1998
).
6.
M.
Bender
,
J.
Trube
, and
J.
Stollenwerk
,
Appl. Phys. A: Mater. Sci. Process.
69
,
397
(
1999
).
7.
R.
Cebulla
,
R.
Wendt
, and
K.
Ellmer
,
J. Appl. Phys.
83
,
1087
(
1998
).
8.
I.
Petrov
,
F.
Adibi
,
J. E.
Greene
,
L.
Hultman
, and
J.-E.
Sundgren
,
Appl. Phys. Lett.
63
,
36
(
1993
).
9.
R.
Wendt
,
K.
Ellmer
, and
K.
Wiesemann
,
J. Appl. Phys.
82
,
2115
(
1997
).
10.
K.
Tominaga
,
T.
Yuasa
,
M.
Kume
, and
O.
Tada
,
Jpn. J. Appl. Phys., Part 1
24
,
944
(
1985
).
11.
S.
Ishibashi
,
Y.
Higuchi
,
Y.
Ota
, and
K.
Nakamura
,
J. Vac. Sci. Technol. A
8
,
1403
(
1990
).
12.
T.
Minami
,
H.
Nanto
,
H.
Sato
, and
S.
Takata
,
Thin Solid Films
164
,
275
(
1988
).
13.
H.
Sato
,
T.
Minami
,
S.
Takata
,
T.
Mouri
, and
N.
Ogawa
,
Thin Solid Films
220
,
327
(
1992
).
14.
R.
Menner
,
R.
Schäffler
,
B.
Sprecher
, and
B.
Dimmler
,
Proceedings of the Second World Conference and Exhibition on Photovoltaic Solar Energy Convention
,
Vienna
, 6–10 July
1998
(unpublished), pp.
660
663
.
15.
J.
Strümpfel
and
C.
May
,
Vacuum
59
,
500
(
2000
).
16.
W. D.
Davis
and
T. A.
Vanderslice
,
Phys. Rev.
131
,
219
(
1963
).
17.
J. W.
Coburn
,
Rev. Sci. Instrum.
41
,
1219
1223
(
1970
).
18.
K.
Ellmer
and
D.
Lichtenberger
,
Surf. Coat. Technol.
74/75
,
586
(
1995
).
19.
M.
Zeuner
,
H.
Neumann
,
J.
Zalman
,
D.
Slavinska
, and
H.
Biederman
,
Vacuum
51
,
417
(
1998
).
20.
M.
Zeuner
,
H.
Neumann
,
J.
Zalman
, and
H.
Biederman
,
J. Appl. Phys.
83
,
5083
(
1998
).
21.
J.
Hinze
and
K.
Ellmer
,
J. Appl. Phys.
88
,
2443
(
2000
).
22.
H.
Helm
,
F.
Howorka
,
F.
Handle
,
F.
Egger
, and
W.
Lindinger
,
J. Phys. B
7
,
170
(
1974
).
23.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
20
,
557
(
1991
).
24.
K.
Ellmer
,
R.
Wendt
, and
K.
Wiesemann
,
Int. J. Mass. Spectrom.
223–224
,
679
(
2003
).
25.
A. D.
Kuypers
and
H. J.
Hopman
,
J. Appl. Phys.
67
,
1229
(
1990
).
26.
C.
Wild
and
P.
Koidl
,
J. Appl. Phys.
69
,
2909
(
1991
).
27.
U.
Flender
and
K.
Wiesemann
,
Plasma Chem. Plasma Process.
15
,
123
(
1995
).
28.
M.
Zeuner
and
J.
Meichsner
,
Vacuum
46
,
151
(
1995
).
29.
M.
Zeuner
and
J.
Meichsner
,
Surf. Coat. Technol.
74–75
,
562
(
1995
).
30.
D. W.
Hoffman
,
J. Vac. Sci. Technol. A
3
,
561
(
1985
).
31.
S. M.
Rossnagel
,
J. Vac. Sci. Technol. A
6
,
19
(
1988
).
32.
T. P.
Drüsedau
,
J. Vac. Sci. Technol. A
20
,
459
(
2002
).
33.
J. F.
Ziegler
,
J. P.
Biersack
, and
U.
Littmark
,
The Stopping and Range of Ions in Solids
(
Pergamon
,
Oxford
,
1985
)
34.
M. A.
Lieberman
and
R. A.
Gottscho
, in
Physics of Thin Films
, edited by
M.
Francombe
and
J.
Vossen
(
Academic
,
New York
,
1994
), Vol.
18
, pp.
1
119
.
35.
R. E.
Somekh
,
J. Vac. Sci. Technol. A
2
,
1285
(
1984
).
36.
F. M.
Penning
,
Naturwiss.
15
,
818
(
1927
).
37.
E. W.
Eckstein
,
J. W.
Coburn
, and
E.
Kay
,
Int. J. Mass Spectrom. Ion Phys.
17
,
129
(
1975
).
38.
C. R.
Aita
,
T. A.
Myers
, and
W. J.
LaRocca
,
J. Vac. Sci. Technol.
18
,
324
(
1981
).
39.
G. Y.
Yeom
,
J. A.
Thornton
, and
M. J.
Kushner
,
J. Appl. Phys.
65
,
3825
(
1989
).
40.
O.
Kluth
,
G.
Schöpe
,
B.
Rech
,
R.
Menner
,
M.
Oertel
,
K.
Orgassa
, and
H. W.
Schock
,
Thin Solid Films
502
,
311
(
2006
).
You do not currently have access to this content.