One-dimensional particle-in-cell Monte Carlo collision simulations of magnetized argon plasmas in an asymmetric capacitively coupled plasma reactor are presented. At low pressure (10mTorr), electron kinetics are strongly affected by the magnetic field and transitions from nonlocal to local kinetic property occur with increasing magnetic field which are reflected in spatially resolved calculations of the electron-energy probability function. For high-energy electrons, the transition takes place when the energy-relaxation length is smaller than the system length. For low-energy electrons, however, the transition occurs when the electron-diffusion time scale in the energy space is shorter than the spatial-diffusion time scale in coordinate space. These observations are in agreement with experimental data and theoretical calculations deduced from the Boltzmann equation. The ion energy distribution function (IEDF) on the driven electrode changes from the ion-neutral collisional type to the ion-neutral collisionless type with increasing magnetic field strength. The maximum ion energy in the IEDF decreases and the angular spread in the ion angle distribution function slightly increases with increasing magnetic field strength. These changes are explained in terms of the ratio of the ion-transit time to rf frequency, the sheath length, and the mean potential difference between the driven electrode and the plasma. At high pressure (218mTorr), electron-neutral collisions disrupt electron gyromotion so that the effects of the magnetic field on electron and ion kinetics are greatly reduced.

1.
D. A.
Carl
,
D. W.
Hess
, and
M. A.
Lieberman
,
J. Vac. Sci. Technol. A
8
,
2924
(
1990
).
2.
M.
Kitajima
,
H.
Kuroki
,
H.
Shinno
, and
K. G.
Nakamura
,
Solid State Commun.
83
,
385
(
1992
).
3.
D. M.
Manos
and
D. L.
Flamm
,
Plasma Etching—An Introduction
(
Academic
,
New York
,
1989
).
4.
H. C.
Kim
,
O.
Manuilenko
, and
J. K.
Lee
,
Jpn. J. Appl. Phys., Part 1
44
,
1957
(
2005
).
5.
C. K.
Birdsall
,
IEEE Trans. Plasma Sci.
19
,
65
(
1991
).
6.
M.
Surendra
,
D. B.
Graves
, and
I. J.
Morey
,
Appl. Phys. Lett.
56
,
1002
(
1990
).
7.
M.
Surendra
and
D. B.
Graves
,
IEEE Trans. Plasma Sci.
19
,
144
(
1991
).
8.
H. C.
Kim
and
J. K.
Lee
,
Phys. Rev. Lett.
93
,
085003
(
2004
).
9.
U.
Kortschagen
,
C.
Busch
, and
L. D.
Tsendin
,
Plasma Sources Sci. Technol.
5
,
1
(
1996
).
10.
U.
Kortschagen
,
Phys. Rev. E
49
,
4369
(
1994
).
11.
L. D.
Tsendin
,
Plasma Sources Sci. Technol.
4
,
200
(
1995
).
12.
V. A.
Godyak
and
R. B.
Piejak
,
Appl. Phys. Lett.
63
,
3137
(
1993
).
13.
S. J.
You
and
H. Y.
Chang
,
Phys. Plasmas
13
,
043503
(
2006
).
14.
C.
Beneking
,
J. Appl. Phys.
68
,
4461
(
1990
).
15.
I. D.
Kaganovich
and
L. D.
Tsendin
,
IEEE Trans. Plasma Sci.
20
,
86
(
1992
).
16.
Z.
Wang
,
A. J.
Lightenberg
, and
R. H.
Cohen
,
IEEE Trans. Plasma Sci.
26
,
59
(
1998
).
17.
I. D.
Kaganovich
and
L. D.
Tsendin
,
IEEE Trans. Plasma Sci.
20
,
66
(
1992
).
18.
U.
Buddemeier
,
U.
Kortshagen
, and
I.
Pukropski
,
Appl. Phys. Lett.
67
,
191
(
1995
).
19.
I. B.
Berstein
and
T.
Holstein
,
Phys. Rev.
94
,
1475
(
1954
).
20.
L. D.
Tsendin
,
Zh. Eksp. Teor. Fiz.
66
,
805
(
1974
).
21.
D. A. W.
Hutchinson
,
M. M.
Turner
,
R. A.
Doyle
, and
M. B.
Hopkins
,
IEEE Trans. Plasma Sci.
23
,
636
(
1995
).
22.
M. M.
Turner
,
D. A. W.
Hutchinson
,
R. A.
Doyle
, and
M. B.
Hopkins
,
Phys. Rev. Lett.
76
,
2069
(
1996
).
23.
J. C.
Park
and
B. K.
Kang
,
IEEE Trans. Plasma Sci.
25
,
3
(
1997
).
24.
E.
Kawamura
,
V.
Vahedi
,
M. A.
Lieberman
, and
C. K.
Birdsall
,
Plasma Sources Sci. Technol.
8
,
R45
(
1999
).
25.
C.
Wild
and
P.
Koidl
,
Appl. Phys. Lett.
54
,
505
(
1989
).
26.
W.
May
,
D.
Field
, and
D. F.
Kelmperer
,
J. Appl. Phys.
71
,
3721
(
1992
).
27.
O. V.
Manuilenko
,
N. Y.
Babaeva
,
H. C.
Kim
,
J. K.
Lee
, and
J. W.
Shon
,
Plasma Sources Sci. Technol.
14
,
89
(
2005
).
28.
S. J.
You
,
H. C.
Kim
,
C. W.
Chung
,
H. Y.
Chang
, and
J. K.
Lee
,
J. Appl. Phys.
94
,
7422
(
2003
).
29.
N. Y.
Babaeva
,
J. K.
Lee
, and
J. W.
Shon
,
J. Phys. D
38
,
287
(
2005
).
30.
M. A.
Lieberman
and
A. J.
Lichtenberg
,
Principles of Plasma Discharges and Materials Processing
, 2nd ed. (
Wiley
,
New York
,
2005
).
31.
S. J.
You
,
C. W.
Chung
,
K. H.
Bai
, and
H. Y.
Chang
,
Appl. Phys. Lett.
81
,
2529
(
2002
).
32.
M. A.
Lieberman
,
A. J.
Lichtenberg
, and
S. E.
Savas
,
IEEE Trans. Plasma Sci.
19
,
2
(
1992
).
33.
T.
Shimizu
,
Y.
Li
,
S.
Iizuka
, and
N.
Sato
,
Proceedings of the 15th Symposium on Plasma Processing
,
Minneapolis
,
1998
, p.
593
.
34.
C. W.
Chung
and
H. Y.
Chang
,
Phys. Plasmas
7
,
3826
(
2000
).
35.
L. D.
Tsendin
,
Sov. Phys. JETP
39
,
805
(
1974
).
36.
Y.
Benke
and
Y. B.
Golubovskii
,
Opt. Spectrosc.
73
,
37
(
1992
).
You do not currently have access to this content.