The Korea Research Institute of Standards and Science has three major vacuum systems: an ultrasonic interferometer manometer (UIM) (Sec. II, Figs. 1 and 2) for low vacuum, a static expansion system (SES) (Sec. III, Figs. 3 and 4) for medium vacuum, and an orifice-type dynamic expansion system (DES) (Sec. IV, Figs. 5 and 6) for high and ultrahigh vacuum. For each system explicit measurement model equations with multiple variables are, respectively, given. According to ISO standards, all these system variable errors were used to calculate the expanded uncertainty (U). For each system the expanded uncertainties (k=1, confidence level=95%) and relative expanded uncertainty (expanded uncertainty/generated pressure) are summarized in Table IV and are estimated to be as follows. For UIM, at 2.5300Pa generated pressure, the expanded uncertainty is <4.17×102Pa and the relative expanded uncertainty is <1.18×102; at 1100kPa generated pressure, the expanded uncertainty is <7.87Pa and the relative expanded uncertainty is <7.84×105. For SES, at 3100Pa generated pressure, the expanded uncertainty is <1.77×101Pa and the relative expanded uncertainty is <1.81×103. For DES, at 4.6×1031.3×102Pa generated pressure, the expanded uncertainty is <1.04×104Pa and the relative expanded uncertainty is <8.37×103; at 3.0×1069.0×104Pa generated pressure, the expanded uncertainty is <8.21×106Pa and the relative expanded uncertainty is <1.37×102. Within uncertainty limits our bilateral and key comparisons [CCM.P-K4 (10Pa1kPa)] are extensive and in good agreement with those of other nations (Fig. 8 and Table V).

1.
S. S.
Hong
,
Y. H.
Shin
, and
K. H.
Chung
,
J. Kor. Vac. Soc.
5
,
181
(
1996
).
2.
P. L. M.
Heydemann
,
C. R.
Tilford
, and
R. W.
Hyland
,
J. Vac. Sci. Technol.
14
,
587
(
1977
).
3.
C. R.
Tilford
,
Appl. Opt.
16
,
1857
(
1977
).
4.
P. L. M.
Heydemann
,
C. R.
Tilford
, and
R. W.
Hyland
,
J. Vac. Sci. Technol.
14
,
599
(
1977
).
5.
S. S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
,
I. T.
Lim
,
S. Y.
Woo
, and
S. C.
Choi
,
J. Kor. Vac. Soc.
10
,
173
(
2001
).
6.
Guide to the Expression of Uncertainty in Measurement
(
ISO
,
Geneva, Switzerland
,
1993
), p.
11
.
7.
K.
Jousten
,
Vacuum
45
,
1205
(
1994
).
8.
K. W. T.
Elliott
and
P. B.
Clapham
,
NPL Mon.
28
,
1
(
1978
).
9.
S. S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
, and
I.
Arakawa
,
Metrologia
42
,
1
(
2005
).
10.
D. E.
Weaver
,
J. Vac. Sci. Technol. A
4
,
338
(
1986
).
11.
J. Y.
Lim
and
K. H.
Chung
,
Vacuum
42
,
979
(
1991
).
12.
K. H.
Chung
,
S. S.
Hong
,
Y. H.
Shin
,
J. Y.
Lim
,
S. K.
Lee
, and
S. Y.
Woo
,
Metrologia
36
,
675
(
1999
).
13.
K. H.
Chung
and
S. S.
Hong
,
IMEKO XIII, Proceedings of the 13th IMEKO World Congress
,
Torino, Italy
, 5–9 September
1994
(unpublished), Vol.
3
, p.
1951
.
14.
S. S.
Hong
,
I. T.
Lim
,
Y. H.
Shin
, and
K. H.
Chung
,
J. Kor. Vac. Soc.
12
,
151
(
2003
).
15.
S. S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
,
G.
Rumiano
,
M.
Bergoglio
, and
A.
Calcatelli
,
J. Kor. Vac. Soc.
4
,
135
(
1995
).
16.
S. S.
Hong
,
K. H.
Chung
, and
F. J.
Redgrave
,
Metrologia
37
,
7
(
2000
).
17.
S. S.
Hong
 et al.,
J. Kor. Vac. Soc.
6
,
308
(
1997
).
18.
S. S.
Hong
,
K. H.
Chung
, and
M.
Hirata
,
Metrologia
36
,
643
(
1999
).
19.
S. S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
, and
K.
Jousten
,
J. Korean Phys. Soc.
44
,
1364
(
2004
).
20.
A. P.
Miiller
 et al.,
Metrologia
39
,
1
(
2002
).
21.
S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
, and
A. P.
Miller
,
JKVST
6
,
109
(
2002
).
22.
S.
Hong
,
Y. H.
Shin
,
K. H.
Chung
, and
K.
Jousten
,
Sae Mulli
45
,
392
(
2002
).
23.
S. S.
Hong
,
Y. H.
Shin
, and
K. H.
Chung
, report (unpublished).
You do not currently have access to this content.