Thin planar polymer films are model systems in a number of fields, including nano- and biotechnology. In contrast to reciprocal space techniques such as reflectivity or diffraction, secondary ion mass spectrometry (SIMS) can provide depth profiles of tracer labeled polymers in real space directly with sufficient depth resolution to characterize many important aspects in these systems. Yet, continued improvements in characterization methods are highly desirable in order to optimize the trade-offs between depth resolution, mass resolution, detection sensitivity, data acquisition time, and artifacts. In this context, the utility of a magnetic sector SIMS instrument for amorphous polymer film analysis was evaluated using model polymer bilayer systems of polystyrene (PS) with poly(methyl methacrylate) (PMMA), PS with poly(2-vinylpyridine), and poly(cyclohexyl methacrylate) (PCHMA) with PMMA. Deuterium-labeled polystyrene embedded in PS or PCHMA at concentrations ranging from 5% to 20%(vv) was used as tracer polymer. Analysis conditions for a magnetic sector SIMS instrument (CAMECA IMS-6f) were varied to achieve a depth resolution of 10nm, high signal/noise ratios, and high sensitivity, while minimizing matrix effects and sample charging. Use of Cs+ and O2+ primary ions with detection of negative and positive secondary ions, respectively, has been explored. Primary beam impact energy and primary ion species have been shown to affect matrix secondary ion yields. Sputtering rates have been determined for PS and PMMA using both primary ion species and referenced to values for intrinsic (100) silicon (Si) under identical analysis conditions.

1.
R. A.L.
Jones
,
Polymers at Surfaces and Interfaces
(
Cambridge University Press
,
New York
,
1999
).
2.
G. J.
Fleer
,
M. A.C.
Stuart
,
J. M.H.M.
Scheutjens
,
T.
Cosgrove
, and
B.
Vincent
,
Polymers at Interfaces
(
Chapman and Hall
,
New York
,
1993
).
3.
S.
Granick
 et al,
J. Polym. Sci., Part B: Polym. Phys.
41
,
2755
(
2003
).
4.
S. E.
Harton
,
F. A.
Stevie
, and
H.
Ade
,
Macromolecules
38
,
3543
(
2005
).
5.
B. J.
Kim
,
H.
Kang
,
K.
Char
,
K.
Katsov
,
G. H.
Fredrickson
, and
E. J.
Kramer
,
Macromolecules
38
,
6106
(
2005
).
6.
B. J.
Reynolds
,
M. L.
Ruegg
,
T. E.
Mates
,
C. J.
Radke
, and
N. P.
Balsara
,
Macromolecules
38
,
3872
(
2005
).
7.
S.
Zhu
,
Y.
Liu
,
M. H.
Rafailovich
,
J.
Sokolov
,
D.
Gersappe
,
D. A.
Winesett
, and
H.
Ade
,
Nature (London)
400
,
49
(
1999
).
8.
P.
Mansky
,
Y.
Liu
,
E.
Huang
,
T. P.
Russell
, and
C.
Hawker
,
Science
275
,
1458
(
1997
).
10.
S.
Ge
,
Y.
Pu
,
W.
Zhang
,
M.
Rafailovich
,
J.
Sokolov
,
C.
Buenviaje
,
R.
Buckmaster
, and
R. M.
Overney
,
Phys. Rev. Lett.
85
,
2340
(
2000
).
11.
H.
Ade
,
X.
Zhang
,
S.
Cameron
,
C.
Costello
,
J.
Kirz
, and
S.
Williams
,
Science
258
,
972
(
1992
).
12.
H.
Ade
and
B.
Hsiao
,
Science
262
,
1427
(
1993
).
13.
A. L.D.
Kilcoyne
 et al,
J. Synchrotron Radiat.
10
,
125
(
2003
).
14.
R. J.
Composto
,
R. M.
Walters
, and
J.
Genzer
,
Mater. Sci. Eng., R.
38
,
107
(
2002
).
15.
S. A.
Schwarz
 et al,
Mol. Phys.
76
,
937
(
1992
).
16.
N.
Winograd
,
Anal. Chem.
77
,
142A
(
2005
).
17.

Depth resolution is defined as the full width at half maximum of a Gaussian convolution function.

19.
J.
Genzer
,
J. B.
Rothman
, and
R. J.
Composto
,
Nucl. Instrum. Methods Phys. Res. B
86
,
345
(
1994
).
20.
J.
Sokolov
,
M. H.
Rafailovich
,
R. A.L.
Jones
, and
E. J.
Kramer
,
Appl. Phys. Lett.
54
,
590
(
1989
).
21.
R.-J.
Roe
,
Methods of X-Ray and Neutron Scattering in Polymer Science
(
Oxford University Press
,
New York
,
2000
).
22.
A.
Hariharan
,
S. K.
Kumar
,
M. H.
Rafailovich
,
J.
Sokolov
,
X.
Zheng
,
D. H.
Duong
,
S. A.
Schwarz
, and
T. P.
Russell
,
J. Chem. Phys.
99
,
656
(
1993
).
23.
S. E.
Harton
,
F. A.
Stevie
,
R. J.
Spontak
,
T.
Koga
,
M. H.
Rafailovich
,
J. C.
Sokolov
, and
H.
Ade
,
Polymer
46
,
10173
(
2005
).
24.
R. G.
Wilson
,
F. A.
Stevie
, and
C. W.
Magee
,
Secondary Ion Mass Spectrometry: A Practical Handbook for Depth Profiling and Bulk Impurity Analysis
(
Wiley
,
New York
,
1989
).
25.
V. K.F.
Chia
,
G. R.
Mount
,
M. J.
Edgell
, and
C. W.
Magee
,
J. Vac. Sci. Technol. B
17
,
2345
(
1999
).
26.
C. W.
Magee
,
D.
Jacobson
, and
H.-J.
Gossmann
,
J. Vac. Sci. Technol. B
18
,
489
(
2000
).
27.
X.
Zhao
,
W.
Zhao
,
J.
Sokolov
,
M. H.
Rafailovich
,
S. A.
Schwarz
,
B. J.
Wildens
,
R. A.L.
Jones
, and
E. J.
Kramer
,
Macromolecules
24
,
5991
(
1991
).
28.
Y. M.
Strzhemechny
,
S. A.
Schwarz
,
J.
Schacter
,
M. H.
Rafailovich
, and
J.
Sokolov
,
J. Vac. Sci. Technol. A
15
,
894
(
1997
).
29.
D. G.
Castner
,
Nature (London)
422
,
129
(
2003
).
30.
A. G.
Sostarecz
,
S.
Sun
,
C.
Szakal
,
A.
Wucher
, and
N.
Winograd
,
Appl. Surf. Sci.
231–232
,
179
(
2004
).
31.
E. R.
Fuoco
,
G.
Gillen
,
M. B.J.
Wijesundara
,
W. E.
Wallace
, and
L.
Hanley
,
J. Phys. Chem. B
105
,
3950
(
2001
).
32.
M. S.
Wagner
,
Anal. Chem.
77
,
911
(
2005
).
33.
C.
Szakal
,
S.
Sun
,
A.
Wucher
, and
N.
Winograd
,
Appl. Surf. Sci.
231–231
,
183
(
2004
).
34.
C. M.
Mahoney
,
J.
Yu
, and
J. A.
Gardella
,
Anal. Chem.
77
,
3570
(
2005
).
35.
J.
Xu
,
S.
Ostrowski
,
C.
Szakal
,
A. G.
Ewing
, and
N.
Winograd
,
Appl. Surf. Sci.
231–232
,
159
(
2004
).
36.
X.
Hu
 et al,
Macromolecules
36
,
823
(
2003
).
37.
D.
Weibel
,
S.
Wong
,
N.
Lockyer
,
P.
Blenkinsopp
,
R.
Hill
, and
J. C.
Vickerman
,
Anal. Chem.
75
,
1754
(
2003
).
38.
J. M.
McKinley
,
F. A.
Stevie
,
C. N.
Granger
, and
D.
Renard
,
J. Vac. Sci. Technol. A
18
,
273
(
2000
).
39.
A. L.
Pivovarov
,
F. A.
Stevie
, and
D. P.
Griffis
,
Appl. Surf. Sci.
231–232
,
786
(
2004
).
40.
G.
Coulon
,
T. P.
Russell
,
V. R.
Deline
, and
P. F.
Green
,
Macromolecules
22
,
2581
(
1989
).
41.
K.
Shin
,
X.
Hu
,
X.
Zheng
,
M. H.
Rafailovich
,
J.
Sokolov
,
V.
Zaitsev
, and
S. A.
Schwarz
,
Macromolecules
34
,
4993
(
2001
).
42.
Z.
Postawa
,
B.
Czerwinski
,
N.
Winograd
, and
B. J.
Garrison
,
J. Phys. Chem. B
109
,
11973
(
2005
).
43.
R. G.
Wilson
,
G. E.
Lux
, and
C. L.
Kirschbaum
,
J. Appl. Phys.
73
,
2524
(
1993
).
44.
K.
Fuchs
,
C.
Friedrich
, and
J.
Weese
,
Macromolecules
29
,
5893
(
1996
).
45.
V. R.
Deline
,
C. A.
Evans
, and
P.
Williams
,
Appl. Phys. Lett.
33
,
578
(
1978
).
46.
V. R.
Deline
,
W.
Katz
,
C. A.
Evans
, and
P.
Williams
,
Appl. Phys. Lett.
33
,
832
(
1978
).
47.
J. A.
Pomposo
,
A.
Mugica
,
J.
Areizaga
, and
M.
Cortazar
,
Acta Polym.
49
,
301
(
1998
).
48.
T. P.
Russell
,
Macromolecules
26
,
5819
(
1993
).
49.
P. J.
Flory
,
Principles of Polymer Chemistry
(
Cornell University Press
,
Ithaca, NY
,
1953
).
50.

R=aN12, where a is the statistical segment length (0.67 nm for PS or dPS), and N is the number of segments in the polymer chain.

51.
E.
Helfand
,
Macromolecules
25
,
1676
(
1992
).
52.
P.
Williams
,
R. K.
Lewis
,
C. A.
Evans
, and
P. R.
Hanley
,
Anal. Chem.
49
,
1399
(
1977
).
You do not currently have access to this content.