Focused ion beam (FIB) machines are key tools for state-of-the art sample preparation in electron microscopy, for characterization and repair in material sciences, for the semiconductor industry and for nanotechnology in general. Liquid-metal ion sources (LMIS) are widely used in FIB machines because they meet the minimum ion source requirements such as source brightness and reliability. However, in FIB machines, noble gas ion sources are favorable for sputtering, beam-induced etching and deposition, because the implanted ions do not change the electrical behavior of the substrate significantly. There are several efforts by various researchers to develop noble gas ion sources that can be used in FIB machines instead of LMIS. The gas ion sources could not meet the minimum ion source requirements. Therefore, LMIS are still a popular choice among FIB machine users. This review article takes a critical look at the reported efforts in the literature to develop noble gas ion sources for FIB machines.

1.
An enormous amount of literature is available on focused ion beam machines and their applications. Just for a few examples see
L. A.
Giannuzzi
and
F. A.
Stevie
,
Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice
(
Springer
, New York,
2005
);
J.
Orloff
,
M.
Utlaut
, and
L.
Swanson
,
High Resolution Focused Ion Beams (FIB and Its Applications)
(
Kluwer Academic/Plenum
, New York,
2003
);
M.
Utlaut
, in
Handbook of Charged Particle Optics
, Chap. 11, edited by
J.
Orloff
(
CRC Press
, New York,
1997
);
R. A. D.
Mackenzie
and
G. D. W.
Smith
,
Nanotechnology
1
,
163
(
1990
);
J.
Melngailis
,
J. Vac. Sci. Technol. B
5
,
469
(
1987
);
J.
Gierak
,
D.
Mailly
,
P.
Hawkes
,
R.
Jede
,
L.
Bruchhaus
,
L.
Bardotti
,
B.
Prevel
,
P.
Melinon
,
A.
Perez
,
R.
Hyndman
,
J. P.
Jamet
,
J.
Ferre
,
A.
Mougin
,
C.
Chappert
,
V.
Mathet
,
P.
Warin
, and
J.
Chapman
,
Appl. Phys. A: Mater. Sci. Process.
80
,
187
(
2005
), http://dsa.dimes.tudelft.nl/usage/technology/FIB/index.html.
2.
S.
Khizroev
and
D.
Litvinov
,
Nanotechnology
15
,
R7
(
2004
).
3.
Z.
Cui
,
P. D.
Prewett
, and
J. G.
Watson
,
J. Vac. Sci. Technol. B
14
,
3942
(
1996
).
4.
P. D.
Prewett
,
A. W.
Eastwood
,
G. S.
Turner
, and
J. G.
Watson
,
Microelectron. Eng.
21
,
191
(
1993
).
5.
G. L. R.
Mair
, in
Handbook of Charged Particle Optics
, Chap. 3, edited by
J.
Orloff
(
CRC Press
, New York,
1997
).
6.
G. D.
Alton
, in
Experimental Methods in the Physical Sciences (Atomic, Molecular and Optical Physics: Charged Particles)
, Vol.
29A
, Chap. 3, edited by
F. B.
Dunning
and
R. G.
Hulet
(
Academic
, London,
1995
).
7.
L. W.
Swanson
,
Appl. Surf. Sci.
76/77
,
80
(
1994
).
8.
J. J.
van Es
,
J.
Gierak
,
R. G.
Forbes
,
V. G.
Suvorov
,
T.
van den Berghe
,
Ph.
Dubuisson
,
I.
Monnet
, and
A.
Septier
,
Microelectron. Eng.
73–74
,
132
(
2004
).
10.
V. E.
Krohn
and
G. R.
Ringo
,
Appl. Phys. Lett.
27
,
479
(
1975
).
11.
P. D.
Prewett
and
G. L. R.
Mair
,
Focused Ion Beams from Liquid Metal Ion Sources
(
Research Studies Press
, Taunton, U.K.,
1991
).
13.
An enormous amount of literature is available on field ionization and field evaporation processes. Just for a few examples see (a)
J.
Orloff
, in
Handbook of Surface Imaging Visualization
, Chap. 13, edited by
Arthur T.
Hubbard
(
CRC Press
, Boca Raton,
1995
);
(b)
E. W.
Müller
and
T. T.
Tsong
,
Field-Ion Microscopy, Field Ionization and Field Evaporation
(
Pergamon
, Oxford,
1973
);
(c)
K. M.
Bowkett
and
D. A.
Smith
,
Field-Ion Microscopy
(
North-Holland
, Amsterdam,
1970
);
(d)
E. W.
Müller
and
T. T.
Tsong
,
Field Ion Microscopy; Principles and Applications
(
Elsevier
, Amsterdam,
1969
);
(e)
R.
Gomer
,
Field Emission and Field Ionization
(
Harvard University Press
, Cambridge,
1961
).
14.
P. W. H.
de Jager
and
L. J.
Vijgen
,
Microelectron. Eng.
23
,
107
(
1994
).
15.
Y.
Zou
,
Y.
Cui
,
V.
Yun
,
A.
Valfells
,
R. A.
Kishek
,
S.
Bernal
,
I.
Haber
,
M.
Reiser
,
P. G.
O’Shea
, and
J. G.
Wang
,
Phys. Rev. ST Accel. Beams
5
,
072801
(
2002
).
16.
A. V.
Crewe
, in
Handbook of Charged Particle Optics
, Chap. 10, edited by
J.
Orloff
(
CRC Press
, New York,
1997
).
17.
P. W.
Hawkes
and
E.
Kasper
,
Principles of Electron Optics
, Vols.
1
,
2
, and
3
, (
Academic
, London,
1994
).
18.
H. N.
Slingerland
,
A Fast Ion Beam Pattern Generator
(
Wibro
, Helmond,
1988
).
19.
L.
Didenko
,
S. K.
Guharay
,
J.
Orloff
, and
J.
Melngailis
,
Nucl. Instrum. Methods Phys. Res. A
427
,
121
(
1999
).
20.
S.
Hirohata
,
T.
Kosugi
,
H.
Sawaragi
,
R.
Aihara
, and
K.
Gamo
,
J. Vac. Sci. Technol. B
10
,
2814
(
1992
).
21.
G. H.
Jansen
,
Nucl. Instrum. Methods Phys. Res. A
298
,
496
(
1990
).
22.
H.
Boersh
,
Z. Phys.
139
,
115
(
1954
).
23.
24.
W.
Knauer
,
Optik
59
,
335
(
1981
).
25.
B.
Zimmermann
,
Adv. Electron. Electron Phys.
29
,
257
(
1979
).
26.
L. W.
Swanson
,
Nucl. Instrum. Methods Phys. Res.
218
,
347
(
1983
).
27.
P.
Kruit
,
L. J.
Vijgen
, and
J.
Xinrong
,
Nucl. Instrum. Methods Phys. Res. A
363
,
220
(
1995
).
28.
X. R.
Jiang
and
P.
Kruit
,
Microelectron. Eng.
30
,
249
(
1996
).
29.
G. H.
Jansen
,
Coulomb Interactions in Particle Beams, Advances in Electronics and Electron Physics
, suppl. 21 (
Academic
, London,
1991
).
30.
P.
Kruit
and
G. H.
Jansen
, in
Handbook of Charged Particle Optics
, Chap. 7, edited by
J.
Orloff
(
CRC Press
, New York,
1997
).
31.
X. R.
Jiang
,
J. E.
Barth
, and
P.
Kruit
,
J. Vac. Sci. Technol. B
14
,
3747
(
1996
).
32.
M. T.
Postek
, in
Handbook of Charged Particle Optics
, Chap. 9, edited by
J.
Orloff
(
CRC Press
, New York,
1997
).
33.
L.
Valyi
,
Atom and Ion Sources
(
Wiley
, London,
1977
).
34.
See, for example,
Handbook of Ion Sources
, edited by
B.
Wolf
(
CRC Press
, Boca Raton,
1995
).
35.
R.
Levi-Setti
,
Proceedings of Seventh Annual SEM Symposium
(
IITRI
, Chicago,
1974
), p.
125
.
36.
J. H.
Orloff
and
L. W.
Swanson
,
J. Vac. Sci. Technol.
12
,
1209
(
1975
).
37.
J. H.
Orloff
and
L. W.
Swanson
,
J. Appl. Phys.
50
,
6026
(
1979
).
38.
S.
Sato
,
T.
Kato
, and
N.
Igata
,
Proc. 11th Symp. on ISIAT 87
,
Tokyo
, (
1987
), p.
91
.
39.
T.
Itakura
,
K.
Horiuchi
, and
H.
Ishikawa
,
Proc. 11th Symp. on ISIAT 87
,
Tokyo
, (
1987
), p.
211
.
40.
K.
Horiuchi
,
T.
Itakura
, and
H.
Ishikawa
,
J. Vac. Sci. Technol. B
6
,
937
(
1988
).
41.
M.
Sato
,
Jpn. J. Appl. Phys., Part 2
31
,
L291
(
1992
).
42.
T.
Sakata
,
K.
Kumagai
,
M.
Naitou
,
I.
Watanabe
,
Y.
Ohhashi
,
O.
Hosoda
,
Y.
Kokubo
, and
K.
Tanaka
,
J. Vac. Sci. Technol. B
10
,
2842
(
1992
).
43.
G. L.
Allan
,
G. J. F.
Legge
, and
J.
Zhu
,
Nucl. Instrum. Methods Phys. Res. B
34
,
122
(
1988
).
44.
G. R.
Hanson
and
B. M.
Siegel
,
J. Vac. Sci. Technol.
16
,
1875
(
1979
).
45.
G. R.
Hanson
and
B. M.
Siegel
,
J. Vac. Sci. Technol.
19
,
1176
(
1981
).
46.
P.
Schwoebel
and
G.
Hanson
,
J. Appl. Phys.
56
,
2101
(
1984
).
47.
P. R.
Schwoebel
and
G. R.
Hanson
,
J. Vac. Sci. Technol. B
3
,
214
(
1985
).
48.
S.
Kalbitzer
,
Appl. Phys. A: Mater. Sci. Process.
79
,
1901
(
2004
).
49.
S.
Kalbitzer
and
A.
Knoblauch
,
Appl. Phys. A: Mater. Sci. Process.
78
,
269
(
2004
).
50.
S.
Kalbitzer
,
Nucl. Instrum. Methods Phys. Res. B
158
,
53
(
1999
).
51.
S.
Kalbitzer
and
A.
Knoblauch
,
Rev. Sci. Instrum.
69
,
1026
(
1998
).
52.
Th.
Miller
,
A.
Knoblauch
, and
S.
Kalbitzer
,
Mater. Sci. Forum
248–249
,
433
(
1997
).
53.
Ch.
Wilbertz
,
Th.
Maisch
,
D.
Huttner
,
K.
Bohringer
,
K.
Jousten
, and
S.
Kalbitzer
,
Nucl. Instrum. Methods Phys. Res. B
63
,
120
(
1992
).
54.
R.
Borret
,
K.
Bohringer
, and
S.
Kalbitzer
,
J. Phys. D
23
,
1271
(
1990
).
55.
K.
Jousten
,
K.
Bohringer
,
R.
Borret
, and
S.
Kalbitzer
,
Ultramicroscopy
26
,
301
(
1988
).
56.
R.
Borret
,
K.
Jousten
,
K.
Bohringer
, and
S.
Kalbitzer
,
J. Phys. D
21
,
1835
(
1988
).
57.
M. K.
Miller
and
S. J.
Sijbrandij
,
Ultramicroscopy
79
,
225
(
1999
).
58.
K.
Edinger
,
V.
Yun
,
J.
Melngailis
,
J.
Orloff
, and
G.
Magera
,
J. Vac. Sci. Technol. B
15
,
2365
(
1997
).
59.
A. E.
Bell
,
K.
Jousten
, and
L. W.
Swanson
,
Rev. Sci. Instrum.
61
,
363
(
1990
).
60.
S. T.
Purcell
,
V. T.
Binh
, and
P.
Thevenard
,
Nanotechnology
12
,
168
(
2001
).
61.
S. T.
Purcell
and
V. T.
Binh
,
J. Vac. Sci. Technol. B
19
,
79
(
2001
).
63.
T.
Teraoka
,
H.
Nakane
, and
H.
Adachi
,
Jpn. J. Appl. Phys., Part 2
33
,
L1110
(
1994
).
64.
M.
Konishi
,
M.
Takizawa
, and
T.
Tsumori
,
J. Vac. Sci. Technol. B
6
,
498
(
1988
).
65.
E.
Salançon
,
Z.
Hammadi
, and
R.
Morin
,
Ultramicroscopy
95
,
183
(
2003
).
66.
S. K.
Guharay
,
S.
Douglass
, and
J.
Orloff
,
Appl. Surf. Sci.
231–232
,
926
(
2004
).
67.
S. K.
Guharay
,
E.
Sokolovsky
, and
J.
Orloff
,
J. Vac. Sci. Technol. B
17
,
2779
(
1999
).
68.
S. K.
Guharay
,
E.
Sokolovsky
, and
J.
Orloff
,
J. Vac. Sci. Technol. B
16
,
3370
(
1998
).
69.
S. K.
Guharay
and
M.
Reiser
,
Proceedings of the 1997 Particle Accelator Conference
(Vancouver, B.C., Canada, 12–16 May
1997
), Vol.
3
,pp.
2681
2683
.
70.
S. K.
Guharay
,
E. A.
Sokolovsky
,
M.
Reiser
,
J.
Orloff
, and
J.
Melngailis
,
Microelectron. Eng.
35
,
435
(
1997
).
71.
S. K.
Guharay
,
W.
Wang
,
V. G.
Dudnikov
,
M.
Reiser
,
J.
Orloff
, and
J.
Melngailis
,
J. Vac. Sci. Technol. B
14
,
3907
(
1996
).
72.
A. A.
Bashkeev
and
V. G.
Dudnikov
,
AIP Conf. Proc.
210
,
329
(
1990
).
73.
V.
Dudnikov
,
C. W.
Schmidt
,
R.
Hren
, and
J.
Wendt
,
Rev. Sci. Instrum.
73
,
989
(
2002
).
74.
S.
Scheloske
,
W.
Durr
,
M.
Maetz
,
R.
Pfahler
,
R.
Repnow
,
H.
Schiebler
, and
K.
Traxel
,
Nucl. Instrum. Methods Phys. Res. B
161–163
,
302
(
2000
).
75.
J. W. G.
Thomason
,
R.
Sidlow
, and
M. O.
Whitehead
,
Rev. Sci. Instrum.
73
,
896
(
2002
).
76.
Q.
Ji
,
X.
Jiang
,
T. J.
King
,
K. N.
Leung
,
K.
Standiford
, and
S. B.
Wilde
,
J. Vac. Sci. Technol. B
20
,
2717
(
2002
).
77.
K. L.
Scott
,
T. J.
King
,
K. N.
Leung
, and
R. F.
Pease
,
J. Vac. Sci. Technol. B
19
,
2602
(
2001
).
78.
L.
Scipioni
,
D.
Stewart
,
D.
Ferranti
, and
A.
Saxonis
,
J. Vac. Sci. Technol. B
18
,
3194
(
2000
).
79.
K. N.
Leung
,
Rev. Sci. Instrum.
71
,
1064
(
2000
).
80.
Y.
Lee
,
Q.
Ji
,
K. N.
Leung
, and
N.
Zahir
,
Rev. Sci. Instrum.
71
,
722
(
2000
).
81.
K. N.
Leung
,
J. Vac. Sci. Technol. B
17
,
2776
(
1999
).
82.
Y.
Lee
,
K. N.
Leung
,
M. D.
Williams
,
W. H.
Bruenger
,
W.
Fallmann
,
H.
Loschner
, and
G.
Stengl
,
Proceedings of the 1999 Particle Accelerator Conference
(
IEEE
, New York,
1999
), p.
2575
.
83.
Y.
Lee
,
R. A.
Gough
,
K. N.
Leung
,
J.
Vujic
,
M. D.
Williams
,
N.
Zahir
,
W.
Fallman
,
M.
Tockler
, and
W.
Bruenger
,
J. Vac. Sci. Technol. B
16
,
3367
(
1998
).
84.
Y.
Lee
,
R. A.
Gough
,
W. B.
Kunkel
,
K. N.
Leung
,
J.
Vujic
,
M. D.
Williams
,
D.
Wutte
, and
F. L.
Yang
,
Microelectron. Eng.
41/42
,
241
(
1998
).
85.
Y.
Lee
,
R. A.
Gough
,
W. B.
Kunkel
,
K. N.
Leung
,
L. T.
Perkins
,
D. S.
Pickard
,
L.
Sun
,
J.
Vujic
,
M. D.
Williams
,
D.
Wutte
,
A. A.
Mondelli
, and
G.
Stengl
,
Nucl. Instrum. Methods Phys. Res. A
385
,
204
(
1997
).
86.
Y.
Lee
,
L. T.
Perkins
,
R. A.
Gough
,
M.
Hoffmann
,
W. B.
Kunkel
,
K. N.
Leung
,
M.
Sarstedt
,
J.
Vujic
,
M.
Weber
, and
M. D.
Williams
,
Nucl. Instrum. Methods Phys. Res. A
374
,
1
(
1996
).
87.
K. N.
Leung
,
P.
Herz
,
W. B.
Kunkel
,
Y.
Lee
,
L.
Perkins
,
D.
Pickard
,
M.
Sarstedt
,
M.
Weber
, and
M. D.
Williams
,
J. Vac. Sci. Technol. B
13
,
2600
(
1995
).
88.
B. G.
Freinkman
,
A. V.
Eletskii
, and
S. I.
Zaitsev
,
Microelectron. Eng.
73–74
,
139
(
2004
).
89.
J. E.
Barth
,
C. B.
de Gruyter
,
E.
Koets
,
P.
Kruit
,
P. E.
van der Leeden
,
J. B.
Le Poole
, and
K. D.
van der Mast
,
Microelectron. Eng.
3
,
147
(
1985
).
90.
R. E.
Marrs
,
Nucl. Instrum. Methods Phys. Res. B
149
,
182
(
1999
).
91.
J. W.
McDonald
,
R. W.
Bauer
, and
D. H. G.
Schneider
,
Rev. Sci. Instrum.
73
,
30
(
2002
).
92.
F. J.
Stadermann
,
Geochim. Cosmochim. Acta
66
,
A734
(
2002
).
93.
For more information about NanoSIMS 50, Search, Cameca applicatioṉnotes in www.google.com OR, send a request to ⟨sales@cameca.fr⟩.
94.
J.
Melngailis
,
Proceedings of 2001 Particle Accelerator Conference
(
IEEE
, Chicago,
2001
), p.
76
.
95.
V. G.
Dudnikov
,
Rev. Sci. Instrum.
67
,
915
(
1996
).
96.
R.
Muhle
,
Rev. Sci. Instrum.
63
,
3040
(
1992
).
97.
R. F.
Welton
,
Proceedings of LINAC 2002
(Gyeongju, Korea,
2002
)p.
559
.
You do not currently have access to this content.