The most challenging requirement for depositing NiTi-based shape memory thin films is the control of film composition because a small deviation can strongly shift the transformation temperatures. This article presents a technique to control film composition via adjustment of the power supplied to the targets during simultaneous sputter deposition from separate Ni, Ti, and X (e.g., Hf) targets. After optimization of sputter parameters such as working gas pressure, target-substrate distance, and target power ratio, binary Ni100xTix thin films were fabricated and characterized by energy dispersive x-ray spectroscopy in a scanning electron microscope (to measure the film composition and uniformity), in situ x-ray diffraction (to identify the phase structures), and differential scanning calorimetry (to indicate the transformation and crystallization temperatures). To explore the possibility of depositing ternary shape memory NiTi-based thin films with a high temperature transformation >100°C, a Hf target was added to the NiTi deposition system. Annealing was carried out in a high vacuum furnace slightly above the films’ crystallization temperatures (500 and 550 °C for NiTi and NiTiHf films, respectively). Differential scanning calorimetry (DSC) results of free-standing films illustrated the dependence of transformation temperatures on film composition: Ap and Mp (referring to the austenitic and martensitic peaks in the DSC curve) were above room temperature in near equiatomic NiTi and Ti-rich films, but below it in Ni-rich films. In NiTiHf films, the transformation temperatures were a function of Hf content, reaching as high as 414 °C (Ap) at a Hf content of 24.4 at. %. Atomic force microscopy revealed nanostructure surface morphology of both NiTi and NiTiHf films. Detailed characterization showed that the film properties were comparable with those of NiTi and NiTiHf bulk alloys.

1.
K.
Otsuka
and
X.
Ren
,
Prog. Mater. Sci.
50
,
511
(
2005
).
2.
Y.
Fu
,
H.
Du
,
W.
Huang
,
S.
Zhang
, and
M.
Hu
,
Sens. Actuators, A
112
,
395
(
2004
).
3.
D. S.
Grummon
,
JOM
55
,
24
(
2003
).
4.
C. L.
Shih
,
B. K.
Lai
,
H.
Kahn
,
S. M.
Philips
, and
A. H.
Heuer
,
J. MEMS
10
,
69
(
2001
).
5.
J. J.
Gill
,
D. T.
Chang
,
L. A.
Momoda
, and
G. P.
Carman
,
Sens. Actuators, A
93
,
148
(
2001
).
6.
S.
Miyazaki
and
A.
Ishida
,
Mater. Sci. Eng., A
273–275
,
106
(
1999
).
7.
K. N.
Melton
,
Engineering Aspects of Shape Memory Alloys
(
Butterworth-Heinemann
, London,
1990
), p.
23
.
8.
D. S.
Grummon
,
L.
Hou
,
Z.
Zhao
, and
T. J.
Pence
,
J. Phys. IV
5
,
665
(
1995
).
9.
V.
Martynov
,
A. D.
Johnson
, and
V.
Gupta
,
J. Phys. IV
112
,
845
(
2003
).
10.
A. D.
Johnson
,
V. V.
Martynov
, and
R. S.
Minners
,
J. Phys. IV
5
,
783
(
1995
).
11.
H.
Du
and
Y.
Fu
,
Surf. Coat. Technol.
176
,
182
(
2004
).
12.
E.
Quandt
,
C.
Halene
,
H.
Holleck
,
K.
Feit
,
M.
Kohl
,
P.
Schlomacher
, and
A.
Skokan
,
Sens. Actuators, A
53
,
434
(
1996
).
13.
A.
Ohta
,
S.
Bhansali
,
I.
Kishimoto
, and
A.
Umeda
,
Sens. Actuators, A
86
,
165
(
2000
).
14.
A.
Ishida
,
A.
Takei
, and
S.
Miyazaki
,
Thin Solid Films
228
,
210
(
1993
).
15.
H.
Rumpf
,
B.
Winzek
,
C.
Zamponi
,
W.
Siegert
,
K.
Neuking
, and
E.
Quandt
,
Mater. Sci. Eng., A
378
,
249
(
2004
).
16.
S.
Besseghini
,
E.
Villa
, and
A.
Tuissi
,
Mater. Sci. Eng., A
273–275
,
390
(
1999
).
17.
R. E.
Somekh
and
Z. H.
Barber
,
J. Phys. E
21
,
1029
(
1988
).
18.
S.
Sanjabi
,
S. K.
Sadrnezhaad
,
K. A.
Yates
, and
Z. H.
Barber
(in press).
19.
S.
Sanjabi
,
Y. Z.
Cao
, and
Z. H.
Barber
,
Sens. Actuators, A
121
,
543
(
2005
).
20.
P. L.
Potapov
,
A. V.
Shelyakov
,
A. A.
Gulyaev
,
E. L.
Svistunova
,
N. M.
Matveeva
, and
D.
Hodgson
,
Mater. Lett.
32
,
247
(
1997
).
21.
D. R.
Angst
,
P. E.
Thoma
, and
M. Y.
Kao
,
J. Phys. IV
5
,
747
(
1995
).
22.
D. N.
AbuJudom
,
P. E.
Thoma
,
M. Y.
Kao
, and
D. R.
Angst
, U.S. Patent No. 5,114,504 (
1992
).
23.
B. D.
Cullity
and
S. R.
Stock
,
Elements of X-ray Diffraction
, 3rd ed. (
Prentice–Hall
, Upper Saddle River, N.J.,
2001
), p.
167
.
24.
H. D.
Gu
,
K. M.
Leung
, and
C. Y.
Chung
,
J. Vac. Sci. Technol. A
16
,
3420
(
1998
).
25.
E.
Cesari
,
P.
Ochin
,
R.
Portier
,
V.
Kolomytsev
,
Y.
Koval
,
A.
Pasko
, and
V.
Soolshenko
,
Mater. Sci. Eng., A
273–275
,
738
(
1999
).
You do not currently have access to this content.