In situ x-ray diffraction was employed during the growth of thin Ti1xAlxN films, using a deposition chamber installed at a synchrotron radiation beamline. The films were deposited by reactive cosputtering from Ti and Al targets. In a previous experiment, the substrate temperature, bias voltage, and nitrogen partial pressure, and thus growth rate, were varied at constant x0.07. High deposition rates of 1Ås lead to the typical crossover behavior between initial (001) and final (111) off-plane preferred orientation. Reducing the deposition rate to <0.5Ås leads to a reversed behavior with a clear (001) preferred orientation above a film thickness of 600 Å, which is essentially independent of the substrate temperature. For the results presented here, the studies were extended to a systemical variation of x from 0 to 0.73 while keeping all the other parameters constant. For a Al concentration up to x0.15 the (001) preferred orientation is persistent. On the other hand, at low deposition rates, a (111) preferred orientation can also be recovered for x>0.15. This can be addressed to the higher adatom mobility of Al compared to Ti in the presence of atomic nitrogen, which leads to enrichtment of Al in (111) oriented grains. As a consequence, an increase of Al towards the segregation threshold of hexagonal AlN leads to preferred precipitation in (111) oriented grains, reducing the (111) intensity and giving rise to a mixed (111)+(001) texture. Increasing the Al content even further up to x0.60 forces the formation of hard nanocomposite nc-TiAlNAlN structures, and finally an Al content of x>0.73 leads to dominant AlN with an a-axis off-plane texture.

1.
W. D.
Münz
,
J. Vac. Sci. Technol. A
4
,
2717
(
1986
).
2.
O.
Knotek
,
W. D.
Münz
, and
T.
Leyendecker
,
J. Vac. Sci. Technol. A
5
,
2173
(
1987
).
4.
R.
Cremer
,
M.
Witthaut
,
A. v.
Richthofen
, and
D.
Neuschütz
,
Fresenius' J. Anal. Chem.
361
,
642
(
1998
).
5.
J.
Musil
and
H.
Hrubý
,
Thin Solid Films
365
,
104
(
2000
).
6.
J.-E.
Sundgren
,
Thin Solid Films
128
,
21
(
1985
).
7.
Y.
Kajikawa
,
S.
Noda
, and
H.
Komiyama
,
J. Vac. Sci. Technol. A
216
,
1943
(
2003
).
8.
I.
Petrov
,
P. B.
Barna
,
L.
Hultman
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
215
,
117
(
2003
).
9.
J.
Pelleg
,
L. Z.
Zevin
,
S.
Lungo
, and
N.
Croitoru
,
Thin Solid Films
197
,
117
(
1991
).
10.
D.
Gall
,
S.
Kodambaka
,
M. A.
Wall
,
I.
Petrov
, and
J. E.
Greene
,
J. Appl. Phys.
93
,
9086
(
2003
).
11.
V.
Valvoda
,
R.
Kuzel
,
R.
Ceroy
, and
J.
Musil
,
Thin Solid Films
156
,
53
(
1988
).
12.
N.
Schell
,
W.
Matz
,
J.
Bøttiger
,
J.
Chevallier
, and
P.
Kringhøj
,
J. Appl. Phys.
91
,
2037
(
2002
).
13.
G.
Abadias
and
Y. Y.
Tse
,
J. Appl. Phys.
95
,
2414
(
2004
).
14.
J. E.
Greene
,
J.-E.
Sundgren
,
L.
Hultman
,
I.
Petrov
, and
D. B.
Bergstrom
,
Appl. Phys. Lett.
67
,
2928
(
1995
).
15.
L.
Hultman
,
J.-E.
Sundgren
,
J. E.
Greene
,
D. B.
Bergstrom
, and
I.
Petrov
,
J. Appl. Phys.
78
,
5395
(
1995
).
16.
F. H.
Baumann
,
D. L.
Chopp
,
T. Díaz
de la Rubia
,
G. H.
Gilmer
,
J. E.
Greene
,
H.
Huang
,
S.
Kodambaka
,
P.
O’Sullivan
, and
I.
Petrov
,
MRS Bull.
26
,
182
(
2001
).
17.
F.
Adibi
,
I.
Petrov
,
J. E.
Greene
,
L.
Hultman
, and
J.-E.
Sundgren
,
J. Appl. Phys.
73
,
8580
(
1993
).
18.
W.
Matz
,
N.
Schell
,
W.
Neumann
,
J.
Bøttiger
, and
J.
Chevallier
,
Rev. Sci. Instrum.
72
,
3344
(
2001
).
19.
M.
Beckers
,
N.
Schell
,
R. M.S.
Martins
,
A.
Mücklich
, and
W.
Möller
,
J. Appl. Phys.
(in press).
21.
W. C.
Oliver
and
G. M.
Pharr
,
J. Mater. Res.
7
,
1564
(
1992
).
24.
B. K.
Gan
,
M. M.M.
Bilek
,
D. R.
McKenzie
,
M. B.
Taylor
, and
D. G.
McCulloch
,
J. Phys.: Condens. Matter
16
,
1751
(
2004
).
25.
F.
Elstner
,
A.
Ehrlich
,
H.
Giegengack
,
H.
Kupfer
, and
F.
Richter
,
J. Vac. Sci. Technol. A
12
,
476
(
1994
).
26.
A.
Madan
,
I. W.
Kim
,
S. C.
Cheng
,
P.
Yashar
,
V. P.
Dravid
, and
S. A.
Barnett
,
Phys. Rev. Lett.
78
,
1743
(
1997
).
27.
Nanomaterials: Synthesis, Properties and Applications
, edited by
A. S.
Edelstein
and
R. C.
Cammarata
(
Institute of Physics Publishing
, Bristol,
1998
).
You do not currently have access to this content.