The effect of post-oxidation annealing in Ar atmosphere (Ar POA) on 4H-SiC–oxide interfaces has been studied by capacitance to gate-bias voltage (CV) measurements and photoemission spectroscopy (PES). It was found from the CV measurements that the shift of the CV curve disappears when the Ar POA temperature is higher than 600 °C. On the other hand, angle-resolved x-ray photoelectron spectroscopy measurements revealed that the thickness of the intermediate layers containing Si1+ oxidation states observed at the interfaces decreases abruptly when the Ar POA temperature exceeds 500 °C. In ultraviolet photoelectron spectra, O2p peaks were changed by Ar POA at temperatures higher than 600 °C, which is the temperature where the shift of the CV curve disappears in CV measurements. This shows that the change in O2p bonding by Ar POA is the origin of the shift observed in CV characteristics. A model of structural changes in the interfaces by Ar POA has been proposed based on the results of PES measurements and those of CV measurements.

1.
For example,
S.
Yoshida
,
Electric Refractory Materials
, edited by
Y.
Kumashiro
(
Marcel Dekker
, New York,
2000
), p.
437
.
2.
Y.
Seki
,
Y.
Shimizu
, and
A.
Nakagawa
,
Power Semiconductor Device and Power IC Handbook
(
Corona
, Tokyo,
1998
), p.
388
.
3.
V. V.
Afanasev
,
M.
Bassler
,
G.
Pensl
, and
M. J.
Sculz
,
Phys. Status Solidi A
162
,
312
(
1997
).
4.
K.
Fukuda
,
S.
Suzuki
,
T.
Tanaka
, and
K.
Arai
,
Appl. Phys. Lett.
76
,
1585
(
2000
).
5.
H.
Li
,
S.
Dimitrijev
,
D.
Sweatman
,
H. B.
Harrison
, and
P.
Tanner
,
J. Appl. Phys.
86
,
4316
(
1999
).
6.
L. A.
Lipkin
and
J. W.
Palmour
,
J. Electron. Mater.
25
,
909
(
1996
).
7.
R.
Kosugi
,
S.
Suzuki
,
M.
Okamoto
,
S.
Harada
,
J.
Senzaki
, and
K.
Fukuda
,
IEEE Electron Device Lett.
23
,
136
(
2002
).
8.
M.
Yoshikawa
,
Y.
Ishida
,
T.
Jijikimoto
,
Y.
Hijikata
,
H.
Ito
,
H.
Okumura
,
T.
Takahashi
,
H.
Tsuchida
, and
S.
Yoshida
,
Trans. IEICE C (in Japanese)
J86-C
,
426
(
2003
).
9.
B.
Hornetz
,
H.-J.
Michel
, and
J.
Halbritter
,
J. Mater. Res.
9
,
3088
(
1994
).
10.
H.
Tsuchida
,
I.
Kamata
, and
K.
Izumi
,
Jpn. J. Appl. Phys., Part 1
34
,
6003
(
1995
).
11.
C.
Onneby
and
C. G.
Pantano
,
J. Vac. Sci. Technol. A
15
,
1597
(
1997
).
12.
G. G.
Jernigan
,
R. E.
Stahlbush
,
M. K.
Das
,
J. A.
Cooper
, Jr.
, and
L. A.
Lipkin
,
Appl. Phys. Lett.
74-10
,
1448
(
1999
).
13.
F.
Amy
,
P.
Soukiassian
,
Y. K.
Hwu
, and
C.
Brylinski
,
Appl. Phys. Lett.
75
,
3360
(
1999
).
14.
L. I.
Johansson
,
C.
Virojanadara
,
T.
Eickhoff
, and
W.
Drude
,
Surf. Sci.
529
,
515
(
2003
).
15.
Y.
Hijikata
,
H.
Yaguchi
,
M.
Yoshikawa
, and
S.
Yoshida
,
Appl. Surf. Sci.
184
,
163
(
2001
).
16.
Y.
Hijikata
,
H.
Yaguchi
,
M.
Yoshikawa
, and
S.
Yoshida
,
Mater. Sci. Forum
389-393
,
1033
(
2002
).
17.
T.
Iida
,
Y.
Tomioka
,
K.
Yoshimoto
,
M.
Midorikawa
,
Y.
Hijikata
,
M.
Orihara
,
H.
Yaguchi
,
M.
Yoshikawa
,
Y.
Ishida
,
S.
Yoshida
 et al,
Jpn. J. Appl. Phys., Part 1
41
,
800
(
2002
).
18.
Y.
Ishida
,
T.
Takahashi
,
H.
Okumura
,
T.
Jijikimoto
,
H.
Tsuchida
,
M.
Yoshikawa
,
Y.
Tomioka
,
Y.
Hijikata
, and
S.
Yoshida
,
Mater. Sci. Forum
389-393
,
1013
(
2002
).
19.
V. V.
Afanas’ev
,
A.
Stesmans
,
M.
Bassler
,
G.
Pensl
, and
M. J.
Schulz
,
Appl. Phys. Lett.
76
,
336
(
2000
).
20.
S.
Ciraci
,
S.
Ellialtioglu
, and
S.
Erkoc
,
Phys. Rev. B
26
,
5716
(
1982
).
21.
M.
Tabe
,
T. T.
Chiang
,
I.
Lindau
, and
W. E.
Spicer
,
Phys. Rev. B
34
,
2706
(
1986
).
22.
S.
Miyazaki
,
J. Vac. Sci. Technol. B
19
,
2212
(
2001
).
You do not currently have access to this content.