In this work thin films of hafnium oxide are deposited on Si(100) substrates by means of atomic layer deposition (ALD) using tetrakis(diethylamino)hafnium and water vapor at substrate temperatures of 250350ºC. Our system capabilities include fast transient delivery of reactive fluids, real-time vapor phase detection (in situ tunable diode laser hygrometer), precursor thermochemical capabilities, and ppt level elemental analysis by inductive coupling plasma mass spectrometry. The composition, purity, and other properties of the films and resulting interfaces are determined using x-ray and Fourier transform infrared spectroscopies, Z-contrast imaging and electron energy loss spectroscopy in a scanning transmission electron microscope with Å scale resolution, and spectroscopic ellipsometry. The observed ALD rate is 1.4Å per cycle. The nonuniformity across the film is less than 4%. Negligible carbon contamination is found in the resulting stoichiometric films under all conditions studied. The pulse sequence was optimized to prevent disastrous particulate problems while still minimizing purge times. The film deposition is investigated as a function of substrate temperature and reagent pulsing characteristics. A mild inverse temperature dependence of the ALD rate is observed. The initial stage of the HfO2 growth is investigated in detail.

1.
International Technology Roadmap for Semiconductors: 2003
, http://public.itrs.net/Files/2003ITRS/Home.htm
2.
G. D.
Wilk
,
R. M.
Wallace
, and
J. M.
Anthony
,
Appl. Phys. Lett.
89
,
5243
(
2001
).
3.
K. J.
Hubbard
and
D. G.
Scholm
,
J. Mater. Res.
11
,
2757
(
1996
).
4.
P. S.
Lysaght
,
P. J.
Chen
,
R.
Bergmann
,
T.
Messina
,
R. W.
Murto
, and
H. R.
Huff
,
J. Non-Cryst. Solids
303
,
54
(
2002
).
5.
E. P.
Gusev
,
C.
Cabral
, Jr.
,
M.
Copel
,
C.
D’Emic
, and
M.
Gribelyuk
,
Microelectron. Eng.
69
,
145
(
2003
).
6.
M. L.
Green
,
M. Y.
Ho
,
B.
Busch
,
G. D.
Wilk
,
T.
Joseph
,
T.
Conrad
,
B.
Brijs
,
W.
Vandervorst
,
P. I.
Raisanen
,
D.
Muller
,
M.
Budeand
, and
J.
Greazul
,
J. Appl. Phys.
92
,
7168
(
2002
).
7.
Y.
Ohshita
,
A.
Ogura
,
A.
Hoshino
,
S.
Hiiro
, and
H.
Machida
,
J. Cryst. Growth
233
,
292
(
2001
).
8.
S.
Choi
,
J.
Koo
,
H.
Jeon
, and
Y.
Kim
,
J. Korean Phys. Soc.
44
,
35
(
2004
).
9.
K.
Kukli
,
M.
Ritala
,
M.
Leskelae
,
T.
Sajavaara
,
J.
Keinonen
,
A. C.
Jones
, and
J. L.
Roberts
,
Chem. Vap. Deposition
9
,
315
(
2003
).
10.
K.
Endo
and
T.
Tatsumi
,
Jpn. J. Appl. Phys., Part 2
42
,
L685
(
2003
).
11.
D. M.
Hausmann
and
R. G.
Gordon
,
J. Cryst. Growth
249
,
251
(
2003
).
12.
J.
Gelatos
,
L.
Chen
,
H.
Chung
,
R.
Thakur
, and
A.
Sinha
,
Solid State Technol.
46
,
44
(
2003
).
13.
R.
Inman
,
A.
Deshpande
, and
G.
Jursich
,
SEMI Tech. Symp. ISM.
205
(
2003
).
14.
Z.
Cui
and
C. G.
Takoudis
,
J. Electrochem. Soc.
150
,
G694
(
2003
).
15.
Z.
Cui
,
J.
Madsen
, and
C. G.
Takoudis
,
J. Appl. Phys.
87
,
8181
(
2000
).
16.
A. Roy
Chowdhuri
,
C. G.
Takoudis
,
R. F.
Klie
, and
N. D.
Browning
,
Appl. Phys. Lett.
80
,
4241
(
2002
).
17.
R. F.
Klie
,
N. D.
Browning
,
A. Roy
Chowdhuri
, and
C. G.
Takoudis
,
Appl. Phys. Lett.
83
,
1187
(
2003
).
18.
J.
Aarik
,
A.
Aidla
,
A.-A.
Kiisler
,
T.
Uustare
, and
V.
Sammelselg
,
Thin Solid Films
340
,
110
(
1999
).
19.
D. M.
Hausmann
,
E.
Kim
,
J.
Becker
, and
R. G.
Gordon
,
Chem. Mater.
14
,
4350
(
2002
).
20.
I. M.
Iskandarova
,
A. A.
Knizhnik
,
E. A.
Rykova
,
A. A.
Bagatur’yants
,
B. V.
Potapkin
, and
A. A.
Korkin
,
Microelectron. Eng.
69
,
587
(
2003
).
21.
A.
Kytokivi
,
E.
Lakomaa
,
A
Root
,
H.
Osterholm
,
J.
Jacobs
, and
H. H.
Brongersma
,
Langmuir
13
,
2717
(
1997
).
22.
M.
Cho
,
Y. S.
Roh
,
C. N.
Whang
,
K.
Jeong
, and
S. W.
Hyun
,
Appl. Phys. Lett.
81
,
334
(
2002
).
23.
K.
Kukli
,
M.
Ritala
,
T.
Sajavara
,
J.
Keinonen
, and
M.
Leskala
,
Chem. Vap. Deposition
8
,
199
(
2002
).
24.
M. M.
Frank
,
Y. J.
Chabal
,
M. L.
Green
,
A.
Delabie
,
B.
Brijs
,
G. D.
Wilk
,
M.
Ho
,
E. B. O. da
Rosa
,
I. J. R.
Baumvol
, and
F. C.
Stedile
,
Appl. Phys. Lett.
83
,
740
(
2003
).
25.
J.
Wang
,
H. P.
Li
, and
R.
Stevens
,
J. Mater. Sci.
27
,
5397
(
1992
).
26.
J. F.
Conley
, Jr.
,
Y.
Ono
,
D. J.
Tweet
, and
W.
Zhuang
,
J. Appl. Phys.
93
,
712
(
2003
).
27.
R. I.
Inman
,
A.
Deshpande
, and
G.
Jursich
,
Mater. Res. Soc. Symp. Proc.
765
,
103
(
2003
).
28.
T.
Suntola
,
Appl. Surf. Sci.
100∕101
,
391
(
1996
).
29.
E. L.
Lakomma
,
Appl. Surf. Sci.
75
,
185
(
1994
).
30.
M.
Deminsky
,
A.
Knizhnik
,
I.
Belov
,
S.
Umanskii
,
E.
Rykova
,
A.
Bagatur’yants
,
B.
Potapkin
,
M.
Stoker
, and
A.
Korkin
,
Surf. Sci.
549
,
67
(
2004
).
31.
Y.
Widjaja
and
C. B.
Musgrave
,
J. Chem. Phys.
117
,
1931
(
2002
).
32.
R. L.
Puurunen
,
Chem. Vap. Deposition
9
,
327
(
2003
).
33.
Y.
Widjaja
and
C. B.
Musgrave
,
Appl. Phys. Lett.
81
,
304
(
2002
).
34.
D. A.
Neumayer
and
E.
Cartier
,
J. Appl. Phys.
90
,
1801
(
2001
).
35.
M.
Frank
,
Y. J.
Chabal
, and
G. D.
Wilk
,
Appl. Phys. Lett.
82
,
4758
(
2003
).
36.
S.
Stemmer
,
Z. Q.
Chen
,
W. J.
Zhu
, and
T. P.
Ma
,
J. Microsc.
210
,
74
(
2003
).
37.
L.
Soriano
,
M.
Abate
,
J. C.
Fuggle
,
M. A.
Jimenez
,
J. M.
Sanz
,
C.
Mythen
, and
H. A.
Padmore
,
Solid State Commun.
87
,
699
(
1993
).
38.
D. J.
Wallis
,
P. H.
Gaskell
, and
R.
Brydson
,
J. Microsc.
180
,
307
(
1995
).
You do not currently have access to this content.