The total ion flux and nitriding rate for stainless steel specimens exposed to a modulated electron beam generated argon-nitrogen plasma were measured as a function of distance from the electron beam axis. The total ion flux decreased linearly with distance, but the nitriding rate increased under certain conditions, contrary to other ion flux/nitriding rate comparisons published in the literature. Variation in ion flux composition with distance was explored with a mass spectrometer and energy analyzer as a possible explanation for the anomalous nitriding rate response to ion flux magnitude. A transition in ion flux composition from mostly N2+ to predominantly N+ ions with increasing distance was observed. Significant differences in molecular and atomic nitrogen ion energy distributions at a negatively biased electrode were also measured. An explanation for nitriding rate dependence based on flux composition and magnitude is proposed.

1.
D. L.
Williamson
,
J. A.
Davis
, and
P. J.
Wilbur
,
Surf. Coat. Technol.
103–104
,
178
(
1998
).
2.
H. R.
Stock
,
C.
Jarms
,
F.
Seidel
, and
J. E.
Döring
,
Surf. Coat. Technol.
94–95
,
247
(
1997
).
3.
T.
Czerwiec
,
N.
Renevier
, and
H.
Michel
,
Surf. Coat. Technol.
131
,
267
(
2000
).
4.
Z. L.
Zhang
and
T.
Bell
,
Surf. Eng.
1
,
131
(
1985
).
5.
S.
Parascandola
,
O.
Kruse
,
E.
Richter
, and
W.
Moeller
,
J. Vac. Sci. Technol. B
17
,
855
(
1999
).
6.
D. L.
Williamson
,
J. A.
Davis
,
P. J.
Wilbur
,
J. J.
Vajo
,
R.
Wei
, and
J. N.
Matossian
,
Nucl. Instrum. Methods Phys. Res. B
127/128
,
930
(
1997
).
7.
A.
Brokman
and
F. R.
Tuler
,
J. Appl. Phys.
52
,
468
(
1981
); [note that the original data in the paper was replotted by the current authors to see the linear flux/nitriding rate dependence and the fluxes were higher (>10 mA cm−2) than those studied here].
8.
R.
Wei
,
Surf. Coat. Technol.
83
,
218
(
1996
).
9.
C. Muratore, D. Leonhardt, S. G. Walton, D. D. Blackwell, R. F. Fernsler, and R. A. Meger, Surf. Coat. Technol. (to be published).
10.
D. L.
Williamson
,
O.
Ozturk
,
R.
Wei
, and
P. J.
Wilbur
,
Surf. Coat. Technol.
65
,
15
(
1994
).
11.
S. G.
Walton
,
D.
Leonhardt
,
D. D.
Blackwell
,
R. F.
Fernsler
,
D. P.
Murphy
, and
R. A.
Meger
,
Phys. Rev. E
65
,
046
412
(
2002
).
12.
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
13.
J. R. McNeil, J. J. McNally, and P. D. Reader, in Handbook of Thin-Film Deposition Processes and Techniques, edited by K. Seshan (Noyes, Park Ridge, NJ, 2002).
14.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
43
,
4965
(
1972
).
15.
Y. Ikezoe, S. Matsuoka, M. Takebe, and A. Viggiano, Gas Phase Ion-Molecule Reaction Rate Constants Through 1986 (Mass Spectroscopy Society of Japan, Tokyo, 1987).
16.
F. J.
Mehr
and
M. A.
Biondi
,
Phys. Rev.
181
,
264
(
1969
).
17.
D.
Leonhardt
,
S. G.
Walton
,
D. D.
Blackwell
,
W. E.
Amatucci
,
D. P.
Murphy
,
R. F.
Fernsler
, and
R. A.
Meger
,
J. Vac. Sci. Technol. A
19
,
1367
(
2001
).
18.
P. C.
Cosby
,
J. Chem. Phys.
98
,
9544
(
1993
).
19.
G. C.
Tibbetts
,
J. Appl. Phys.
45
,
5072
(
1974
).
20.
G.
Henrion
,
R.
Hugon
,
M.
Fabry
, and
V.
Scherentz
,
Surf. Coat. Technol.
97
,
729
(
1997
).
21.
M. J.
Baldwin
,
S. C.
Haydon
, and
M. P.
Fewell
,
Surf. Coat. Technol.
97
,
97
(
1997
).
22.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
20
,
557
(
1991
).
23.
K.-U.
Reimann
,
Phys. Plasmas
1
,
552
(
1994
).
24.
D. M. Manos and H. F. Dylla, in Plasma Etching: An Introduction, edited by D. M. Manos and D. L. Flamm (Academic, San Diego, 1989).
25.
M. P.
Fewell
,
J. M.
Priest
,
M. J.
Baldwin
,
G. A.
Collins
, and
K. T.
Short
,
Surf. Coat. Technol.
131
,
284
(
2000
).
26.
H. F.
Winters
,
D. E.
Horne
, and
E. E.
Donaldson
,
J. Chem. Phys.
41
,
2766
(
1964
).
This content is only available via PDF.
You do not currently have access to this content.