Low temperature deposited coatings have the potential to reduce the production costs of silicon (Si) photovoltaic devices, such as the buried-contact (BC) solar cell. This work investigates the potential of titanium dioxide (TiO2) films to replace silicon dioxide (SiO2) or nitride coatings currently implemented in the BC fabrication sequence, which requires films to be stable at temperatures up to 1000 °C in a variety of gas atmospheres. The authors demonstrate that: (i) TiO2 films do not reduce the bulk minority carrier lifetime of the silicon wafer after lengthy high temperature processing, however chemical reduction of the TiO2 film can occur if samples are not loaded in an oxygen-containing ambient; (ii) a thin SiO2 passivation layer can be formed at the TiO2:Si interface by performing a brief oxidation afterTiO2 film deposition; (iii) while TiO2 coatings function as a phosphorus diffusion barrier, reactions between TiO2 and the phosphorus source result in irreversible damage to the TiO2 film; (iv) phosphorus-doped TiO2 films can act as an n-type dopant source, however further reactions with phosphorus limit the usefulness of the film. Thus, TiO2 films are compatible with the high temperature processing required for BC solar cells, but not with any phosphorus diffusion steps.

1.
S. Wenham, Progress in Photovoltaics 1, 3 (1993).
2.
B.
Richards
,
S.
Rowlands
,
A.
Ueranatasun
,
J.
Cotter
, and
C.
Honsberg
,
Solar Energy
76
,
269
(
2004
).
3.
S.
Wenham
,
J.
Zhao
,
X.
Dai
,
A.
Wang
, and
M.
Green
,
Sol. Energy Mater. Sol. Cells
65
,
377
(
2001
).
4.
S.
Wenham
,
B.
Chan
,
C.
Honsberg
, and
M.
Green
,
Prog. Photovoltaics
5
,
131
(
1997
).
5.
B. Richards, Progress in Photovoltaics (in press).
6.
S. Wenham et al., “Simplified buried-contact solar cell process,” in Proceedings of the 25th Photovoltaics Specialists Conference, 1996 (unpublished), pp. 389–392.
7.
T. Bruton et al., “Towards 20% efficienct solar cells manufactured at 60 MWp per annum,” in Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, 2003 (in press).
8.
C. Honsberg, S. Edmiston, A. Fung, M. Molitor, and S. Wenham, “New simplified buried contact process for czochralski and multicrystalline wafers,” in Proceedings of the 14th European Conference on Photovoltaics and Solar Energy Conversion, 1997 (unpublished), pp. 146–149.
9.
B.
Richards
,
J.
Cotter
, and
C.
Honsberg
,
Appl. Phys. Lett.
80
,
1123
(
2002
).
10.
B.
Richards
,
S.
Rowlands
,
C.
Honsberg
, and
J.
Cotter
,
Progress in Photovoltaics
11
,
27
(
2003
).
11.
B.
Richards
,
Sol. Energy Mater. Sol. Cells
79
,
369
(
2003
).
12.
D.
Wong
and
A.
Waugh
,
Mater. Res. Soc. Symp. Proc.
426
,
503
(
1996
).
13.
S. Narayanan, J. Creager, S. Roncin, A. Rohatgi, and Z. Chen, “Process improvements for large area polycrystalline silicon buried contact solar cell sequence,” in Proceedings of the 1st World Conference on Photovoltaic Energy Conversion, 1994 (unpublished), pp. 1319–1322.
14.
A. Haigh, “Fired through printed contacts on antireflection coated silicon terrestrial solar cells,” in Proceedings of the 12th IEEE Photovoltaics Specialists Conference, 1976 (unpublished), pp. 360–361.
15.
S.
Campbell
et al.,
IEEE Trans. Electron Devices
44
,
104
(
1997
).
16.
M.
Rashti
and
D.
Brodie
,
Thin Solid Films
240
,
163
(
1994
).
17.
H. Berger, Ultrasonic Liquid Atomization: Theory and Application (Partridge Hill, Hyde Park, 1998).
18.
B.
Yoldas
,
J. Mater. Sci.
12
,
1203
(
1977
).
19.
J. Hugman, B. Richards, and A. Crosky, “Phase characterization of TiO2 thin films using micro Raman spectroscopy and low glancing angle x-ray diffraction,” in Conference on Optoelectronic and Microelectronic Materials and Devices (COMMAD), 2002, Sydney, Australia, 11–13 December (unpublished), pp. 181–184.
20.
B. Richards, “Novel applications of titanium dioxide thin films for silicon solar cells,” Ph.D. thesis, University of New South Wales, 2002, ISBN: 0 7334 1971 2.
21.
W.
Kern
and
D.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
22.
L.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
9
,
344
(
1985
).
23.
D. E. Kane and R. Swanson, “Measurement of the emitter saturation current by a contactless photoconductivity method,” in Proceedings of the 18th IEEE Photovoltaics Specialists Conference, 1985 (unpublished), pp. 578–583.
24.
P. Basore and B. Hansen, “Microwave-detected photoconductance decay,” in Proceedings of the 21st IEEE Photovoltaics Specialists Conference, 1990 (unpublished), pp. 374–379.
25.
K. Graff, Metal Impurities in Silicon-Device Fabrication (Springer-Verlag, Berlin, 1995).
26.
J.
Davis
et al.,
IEEE Trans. Electron Devices
ED-27
,
677
(
1980
).
27.
A.
Rohatgi
et al.,
Solid-State Electron.
23
,
415
(
1980
).
28.
H.
Ardakani
,
Thin Solid Films
248
,
234
(
1994
).
29.
A.
von Hippel
,
J.
Kalnajs
, and
W.
Westphal
,
J. Phys. Chem. Solids
23
,
779
(
1962
).
30.
H.
Pulker
,
G.
Paesold
, and
E.
Ritter
,
Appl. Opt.
15
,
2986
(
1976
).
31.
G.
Battiston
et al.,
Thin Solid Films
371
,
126
(
2000
).
32.
S.
Chen
et al.,
J. Vac. Sci. Technol. A
11
,
2419
(
1993
).
33.
A. Revesz, “Vitreous oxide antireflection films in high-efficiency solar cells,” in Proceedings of the 10th IEEE Photovoltaics Specialists Conference, 1973 (unpublished), pp. 180–181.
34.
H. Liang, “Atmospheric pressure chemical vapor deposition of textured zinc oxide, doped titanium dioxide, and doped zinc oxide thin films,” Ph.D. thesis, Harvard University, 1997.
35.
P. Kofstad, Nonstoichiometry, Diffusion, and Electrical Conductivity in Binary Metal Oxides (Wiley–Interscience, New York, 1972).
36.
N. Tsuda, K. Nasu, A. Yanase, and K. Siratori, Electronic Conduction in Oxides (Springer-Verlag, Berlin, 1983).
37.
R. Meyer and E. Pietsch, Gmelins Handbuch Der Anorganischen Chemie: Titan (Verlag Chemie, Weinheim, 1951), Vol. 41.
38.
R. Gonzalez, “Raman, infrared, x-ray, and EELS studies of nanophase titania,” Ph.D. thesis, Faculty of Virginia Polytechnic Institute and State University, 1996.
39.
P.
Temple
and
C.
Hathaway
,
Phys. Rev. B
7
,
3685
(
1973
).
40.
E.
Fitzgibbons
,
K.
Sladek
, and
W.
Hartwig
,
J. Electrochem. Soc.
119
,
735
(
1972
).
41.
V.
Erkov
,
S.
Devyatova
,
E.
Molodstova
,
T.
Malsteva
, and
U.
Yanovskii
,
Appl. Surf. Sci.
166
,
51
(
2000
).
42.
L.
Zhagata
and
I.
Feltyn
,
Inorg. Mater. (Transl. of Neorg. Mater.)
14
,
868
(
1978
).
43.
P.
Kumar
,
S.
Badrinarayanan
, and
M.
Sastry
,
Thin Solid Films
358
,
122
(
2000
).
44.
L.
Doeswijk
,
H.
de Moor
,
D.
Blank
, and
H.
Rogalla
,
Appl. Phys. A: Mater. Sci. Process.
69
,
S409
(
1999
).
45.
J. Wohlgemuth, D. Warfield, and G. Johnson, “Development of a new low cost antireflection coating technique for solar cells,” in Proceedings of the 16th IEEE Photovoltaics Specialists Conference, 1982 (unpublished), pp. 809–812.
46.
G.
Crotty
,
T.
Daud
, and
R.
Kachare
,
J. Appl. Phys.
61
,
3077
(
1987
).
47.
M.-A.
Nicolet
,
Thin Solid Films
52
,
415
(
1978
).
48.
J.
Drynan
,
H.
Hada
, and
T.
Kunio
,
Mater. Res. Soc. Symp. Proc.
260
,
323
(
1992
).
49.
R.
Glaum
and
R.
Gruehn
,
Z. Anorg. Allg. Chem.
580
,
78
(
1990
).
50.
R. Gonzalez and R. Zallen, “Optical studies of nanophase titania,” in Amorphous Insulators and Semiconductors, edited by M. Thorpe and M. Mitkova (Kluwer Academic, The Netherlands, 1997), pp. 395–403.
51.
W.
Zachariasen
,
J. Am. Chem. Soc.
54
,
3841
(
1932
).
52.
E. Levin and H. McMurdie, Phase Diagrams for Ceramists: 1975 Supplement (National Bureau of Standards, Washington, D.C., 1975), Vol. XI, p. 178.
53.
B. Yoldas and L. Yoldas, “Diffusion of dopant from optical coating and single step formation of pn junction in silicon solar cell and coating thereon, 1981, U.S. Patent No. 4 251 285.
54.
Y. Yokozawa, S. Moriuchi, T. Nunoi, and H. Nakaya, “Formation of phosphorus-containing titanium oxide film, production of solar cell and device therefor,” Toshiba Corp., 1996, Japanese Patent No. JP08085874A.
55.
Y. Yokozawa and S. Moriuchi, “Solar cell and fabrication thereof,” Toshiba Corp., 1998, Japanese Patent No. JP10070296A.
56.
K. Ui, H. Nakaya, and T. Noru, “p–n junction and method for forming reaction product,” Toshiba Corp., 1999, Japanese Patent No. JP11340486A.
57.
S.
Martin
,
C.
Morrison
, and
M.
Hoffmann
,
J. Phys. Chem.
98
,
13695
(
1994
).
58.
W.
Brown
and
W.
Grannemann
,
Solid-State Electron.
21
,
837
(
1978
).
59.
G.
Johnson
,
J. Am. Ceram. Soc.
36
,
97
(
1953
).
60.
V.
Plekhotkin
,
J. Appl. Chem.
41
,
2218
(
1968
).
61.
M. Chase, NIST-JANAF Thermochemical Tables, 4th ed. (American Chemical Society, American Institute of Physics for the National Institute of Standards and Technology, Woodbury, N.Y, 1998).
62.
D. Lide, editor, CRC Handbook of Physics and Chemistry, 76th ed. (CRC Press, Boca Raton, 1995–1996).
63.
M. Binnewies and E. Milke, Thermochemical Data of Elements and Compounds (Wiley–VCH, Weinheim, 1999).
This content is only available via PDF.
You do not currently have access to this content.