The critical aspects of the epitaxial growth of alkaline-earth oxides on silicon are described in detail. The step by step transition from the silicon to the alkaline-earth oxide as shown through reflection high energy electron diffraction is presented, with emphasis placed on the favorable interface stability, oxidation, structural, and strain considerations for each stage of the growth via molecular beam epitaxy.
REFERENCES
1.
2.
3.
M.
Ihara
, Y.
Arimoto
, M.
Jifuku
, T.
Kimura
, S.
Kodama
, H.
Yamawaki
, and T.
Yamaoka
, J. Electrochem. Soc.
129
, 2569
(1982
).4.
S.
Matsubara
, N.
Shohata
, and M.
Mikami
, Jpn. J. Appl. Phys., Suppl.
24
, 10
(1985
).5.
R. A.
McKee
, F. J.
Walker
, and M.
Chisholm
, Phys. Rev. Lett.
81
, 3014
(1998
).6.
Applied EPI, St. Paul, MN.
7.
Aldrich-APL, Urbana, IL, 99.99% pure.
8.
Aldrich-APL, Urbana, IL, 99.99% pure.
9.
Alfa Aesar, 99.9% pure.
10.
Minolta/Land Cyclops 152, Osaka, Japan.
11.
Virginia Semiconductor, Inc. Fredericksburg VA (single side polished, phosphorous doped, 1.0–10.0 Ω⋅cm resistivity).
12.
13.
S.
Yadavalli
, M. H.
Yang
, and C. P.
Flynn
, Phys. Rev. B
41
, 7961
(1990
).14.
E. S.
Hellman
and E. H.
Hartford
, Jr., Appl. Phys. Lett.
64
, 1341
(1994
).15.
F. J. Walker and R. A. McKee (unpublished).
16.
1 ML is defined as the concentration of atoms on the (001) surface of silicon, i.e.,
17.
18.
Y.
Liang
, S.
Gan
, and M.
Engelhard
, Appl. Phys. Lett.
79
, 3591
(2001
).19.
A.
Herrera-Gomez
, F.S.
Aguirre-Tostado
, Y.
Sun
, P.
Pianetta
, Z.
Yu
, D.
Marshall
, R.
Droopad
, and W. E.
Spicer
, J. Appl. Phys.
90
, 6070
(2001
).20.
X-ray photoelectron spectroscopy (XPS) would potentially provide the most useful data to answer this question. Given the fact that the “silicide” layer is submonolayer and provides a minimal signal compared to the silicon substrate and the near overlap of the binding energy that exists in the peaks in an XPS spectrum for silicon (∼98.8–99.5 eV) and a silicide (∼99.5–99.8 eV), conclusive determination remains elusive.
21.
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. E. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corp., Eden Prairie, MN, 1992).
22.
J. Wang (personal communication).
23.
V. G. Lifshits, A. A. Saranin, and A. V. Zotov, Surface Phases on Silicon: Preparation, Structures, and Properties, 1st ed. (Wiley, New York, 1994).
24.
W. A.
Henle
, M. G.
Ramsey
, F. P.
Netzer
, and S.
Witzel
, Surf. Sci.
243
, 141
(1991
).25.
26.
27.
28.
J. T.
Jones
, E. T.
Croke
, C. M.
Garland
, O. J.
Marsh
, and T. C.
McGill
, J. Vac. Sci. Technol. B
16
, 2686
(1998
).29.
J. P.
Liu
, P.
Zaumseil
, E.
Bugiel
, and H. J.
Osten
, Appl. Phys. Lett.
79
, 671
(2001
).30.
D. K.
Fork
, F. A.
Ponce
, J. C.
Tramontana
, and T. H.
Geballe
, Appl. Phys. Lett.
58
, 2294
(1991
).31.
32.
Y. Kado and Y. Arita, Extended Abstracts of the 18th (1986) International Conference on Solid State Devices and Materials, Tokyo, Japan, 1986, p. 45.
33.
H.
Mori
and H.
Ishiwara
, Jpn. J. Appl. Phys., Part 2
30
, L1415
(1991
).34.
H.
Ishiwara
, H.
Mori
, K.
Jyokyo
, and S.
Ueno
, Mater. Res. Soc. Symp. Proc.
220
, 595
(1991
).35.
O.
Nakagawara
, M.
Kobayashi
, Y.
Yoshino
, Y.
Katayama
, H.
Tabata
, and T.
Kawai
, J. Appl. Phys.
78
, 7226
(1995
).36.
T.
Tambo
, K.
Maeda
, A.
Shimizu
, and C.
Tatsuyama
, J. Appl. Phys.
86
, 3213
(1999
).37.
R. A.
McKee
, F. J.
Walker
, J. R.
Conner
, E. D.
Specht
, and D. E.
Zelmon
, Appl. Phys. Lett.
59
, 782
(1991
).38.
Y. Kado and Y. Arita, Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials, Tokyo, Japan, 1988, p. 181.
39.
H.
Fukumoto
, T.
Imura
, and Y.
Osaka
, Appl. Phys. Lett.
55
, 360
(1989
).40.
41.
K.
Harada
, H.
Nakanishi
, H.
Itozaki
, and S.
Yazu
, Jpn. J. Appl. Phys., Part 1
30
, 934
(1991
).42.
S. C.
Choi
, M. H.
Cho
, S. W.
Whangbo
, C. N.
Whang
, S. B.
Kang
, S. I.
Lee
, and M. Y.
Lee
, Appl. Phys. Lett.
71
, 903
(1997
).43.
M.-H.
Cho
, D.-H.
Ko
, Y. K.
Choi
, I. W.
Lyo
, K.
Jeong
, T. G.
Kim
, J. H.
Song
, and C. N.
Whang
, J. Appl. Phys.
89
, 1647
(2001
).44.
E. J.
Tarsa
, J. S.
Speck
, and McD.
Robinson
, Appl. Phys. Lett.
63
, 539
(1993
).45.
H.
Nagata
, M.
Yoshimoto
, T.
Tsukahara
, S.
Gonda
, and H.
Koinuma
, Mater. Res. Soc. Symp. Proc.
202
, 445
(1991
).46.
M.
Morita
, H.
Fukumoto
, T.
Imura
, Y.
Osaka
, and M.
Ichihara
, J. Appl. Phys.
58
, 2407
(1985
).47.
Y.
Osaka
, T.
Imura
, Y.
Nishibayashi
, and F.
Nishiyama
, J. Appl. Phys.
63
, 581
(1988
).48.
H.
Myoren
, Y.
Nishiyama
, H.
Fukumoto
, H.
Nasu
, and Y.
Osaka
, Jpn. J. Appl. Phys., Part 1
28
, 351
(1989
).49.
P.
Legagneux
, G.
Garry
, D.
Dieumegard
, C.
Schwebel
, C.
Pellet
, G.
Gautherin
, and J.
Siejka
, Appl. Phys. Lett.
53
, 1506
(1988
).50.
H.
Fukumoto
, T.
Imura
, and Y.
Osaka
, Jpn. J. Appl. Phys., Part 2
27
, L1404
(1988
).51.
H.
Fukumoto
, M.
Yamamoto
, Y.
Osaka
, and F.
Nishiyama
, J. Appl. Phys.
67
, 2447
(1990
).52.
H.
Fukumoto
, M.
Yamamoto
, and Y.
Osaka
, J. Appl. Phys.
69
, 8130
(1991
).53.
D. K.
Fork
, D. B.
Fenner
, G. A. N.
Connell
, J. M.
Phillips
, and T. H.
Geballe
, Appl. Phys. Lett.
57
, 1137
(1990
).54.
D. K.
Fork
, D. B.
Fenner
, R. W.
Barton
, J. M.
Phillips
, G. A. N.
Connell
, J. B.
Boyce
, and T. H.
Geballe
, Appl. Phys. Lett.
57
, 1161
(1990
).55.
D. K.
Fork
, F. A.
Ponce
, J. C.
Tramontana
, N.
Newman
, J. M.
Phillips
, and T. H.
Geballe
, Appl. Phys. Lett.
58
, 2432
(1991
).56.
D. B.
Fenner
, A. M.
Viano
, D. K.
Fork
, G. A. N.
Connell
, J. B.
Boyce
, F. A.
Ponce
, and J. C.
Tramontana
, J. Appl. Phys.
69
, 2176
(1991
).57.
W.
Prusseit
, S.
Corsépius
, M.
Zwerger
, P.
Berberich
, H.
Kinder
, O.
Eibl
, C.
Jaekel
, U.
Breuer
, and H.
Kurz
, Physica C
201
, 249
(1992
).58.
M.
Ishida
, I.
Katakabe
, T.
Nakamura
, and N.
Ohtake
, Appl. Phys. Lett.
52
, 1326
(1988
).59.
K.
Sawada
, M.
Ishida
, T.
Nakamura
, and N.
Ohtake
, Appl. Phys. Lett.
52
, 1672
(1988
).60.
61.
H.
Wado
, T.
Shimizu
, and M.
Ishida
, Appl. Phys. Lett.
67
, 2200
(1995
).62.
63.
M. Mikami, Y. Hokari, K. Egami, H. Tsuya, and M. Kanamori, Extended Abstracts of the 15th Conference on Solid State Devices and Materials (Japan Society Applied Physics, Tokyo, 1983), pp. 31–34.
64.
65.
Z.
Yu
, J.
Ramdani
, J. A.
Curless
, C. D.
Overgaard
, J. M.
Finder
, R.
Droopad
, K. W.
Eisenbeiser
, J. A.
Hallmark
, W. J.
Ooms
, and V. S.
Kaushik
, J. Vac. Sci. Technol. B
18
, 2139
(2000
).66.
M.
Yoshimoto
, K.
Shimozono
, T.
Maeda
, T.
Ohnishi
, M.
Kumagai
, T.
Chikyow
, O.
Ishiyama
, M.
Shinohara
, and H.
Koinuma
, Jpn. J. Appl. Phys., Part 2
34
, L688
(1995
).67.
C. D. Theis and D. G. Schlom, in High Temperature Materials Chemistry IX, edited by Karl Spear (Electrochemical Society, Pennington, NJ, 1997), Vol. 97–39, pp. 610–616.
68.
J. Lettieri, J. Rodriguez Contreras, V. Vaithyanathan, and D. G. Schlom (unpublished).
69.
E. G.
Keim
, L.
Wolterbeek
, and A. Van
Silfhout
, Surf. Sci.
180
, 565
(1987
).70.
N. A.
Braaten
, J. K.
Grepstad
, S.
Raaen
, and S. L.
Qui
, Surf. Sci.
250
, 51
(1991
).71.
P.
Soukiassian
, T. M.
Gentle
, M. H.
Bakshi
, and Z.
Hurych
, J. Appl. Phys.
60
, 4339
(1986
).72.
Y.
Huttel
, E.
Bourdie
, P.
Soukkiassian
, P. S.
Mangat
, and Z.
Hurych
, Appl. Phys. Lett.
62
, 2437
(1993
).73.
A.
Mesarwi
, W. C.
Fan
, and A.
Ignatiev
, J. Appl. Phys.
68
, 3609
(1990
).74.
75.
M. H.
Yang
and C. P.
Flynn
, Phys. Rev. Lett.
62
, 2476
(1989
).76.
77.
T.
Waho
, S.
Ogawa
, and S.
Maruyama
, Jpn. J. Appl. Phys.
16
, 1875
(1977
).78.
A.
Fischer
, Z.
Feng
, E.
Bykov
, G.
Contreras-Puente
, A.
Compaan
, F.
de Landa Castillo-Alvarado
, J.
Avendano
, and A.
Mason
, Appl. Phys. Lett.
70
, 3239
(1997
).79.
80.
81.
82.
P. R.
Berger
, K.
Chang
, P.
Bhattacharya
, J.
Singh
, and K. K.
Bajaj
, Appl. Phys. Lett.
53
, 684
(1988
).83.
J. Lettieri, J. H. Haeni, and D. G. Schlom (unpublished).
84.
V. V.
Il’chenko
, G. V.
Kuznetsov
, V. I.
Strikha
, and A. I.
Tsyganova
, Mikroelektronika
27
, 340
(1998
)V. V.
Il’chenko
, G. V.
Kuznetsov
, V. I.
Strikha
, and A. I.
Tsyganova
, [Russ. Microelectron
27
, 291
(1998
)].85.
V. V.
Il’chenko
and G. V.
Kuznetsov
, [Tech. Phys. Lett.
27
, 333
(2001
)].86.
The destructive reaction at the alkaline earth oxide/Si interface has been observed over a range of temperatures from 580 to 630 °C depending on the quality of the interface and wafer vicinality. Never has the interface been seen to withstand temperatures above 700 °C.
87.
G. A.
Costa
, M.
Ferretti
, E. A.
Franceschi
, and G. L.
Olcese
, Thermochim. Acta
133
, 17
(1988
).88.
S. G.
Tresvyatskii
, L. M.
Lopato
, A. E.
Kushchevskii
, and A. V.
Shevchenko
, Inorg. Mater. (Transl. of Neorg. Mater.)
7
, 1681
(1971
).89.
S. G.
Tresvyatskii
, V. N.
Pavlikov
, L. M.
Lopato
, and L. I.
Lugin
, Inorg. Mater. (Transl. of Neorg. Mater.)
6
, 33
(1970
).90.
91.
This content is only available via PDF.
© 2002 American Vacuum Society.
2002
American Vacuum Society
You do not currently have access to this content.