The critical aspects of the epitaxial growth of alkaline-earth oxides on silicon are described in detail. The step by step transition from the silicon to the alkaline-earth oxide as shown through reflection high energy electron diffraction is presented, with emphasis placed on the favorable interface stability, oxidation, structural, and strain considerations for each stage of the growth via molecular beam epitaxy.

1.
T.
Yamaguti
,
Proc. Phys. Math. Soc. Jpn.
17
,
443
(
1935
).
2.
R.
Sato
,
J. Phys. Soc. Jpn.
6
,
527
(
1951
).
3.
M.
Ihara
,
Y.
Arimoto
,
M.
Jifuku
,
T.
Kimura
,
S.
Kodama
,
H.
Yamawaki
, and
T.
Yamaoka
,
J. Electrochem. Soc.
129
,
2569
(
1982
).
4.
S.
Matsubara
,
N.
Shohata
, and
M.
Mikami
,
Jpn. J. Appl. Phys., Suppl.
24
,
10
(
1985
).
5.
R. A.
McKee
,
F. J.
Walker
, and
M.
Chisholm
,
Phys. Rev. Lett.
81
,
3014
(
1998
).
6.
Applied EPI, St. Paul, MN.
7.
Aldrich-APL, Urbana, IL, 99.99% pure.
8.
Aldrich-APL, Urbana, IL, 99.99% pure.
9.
Alfa Aesar, 99.9% pure.
10.
Minolta/Land Cyclops 152, Osaka, Japan.
11.
Virginia Semiconductor, Inc. Fredericksburg VA (single side polished, (001)±0.1°, phosphorous doped, 1.0–10.0 Ω⋅cm resistivity).
12.
K. J.
Hubbard
and
D. G.
Schlom
,
J. Mater. Res.
11
,
2757
(
1996
).
13.
S.
Yadavalli
,
M. H.
Yang
, and
C. P.
Flynn
,
Phys. Rev. B
41
,
7961
(
1990
).
14.
E. S.
Hellman
and
E. H.
Hartford
, Jr.
,
Appl. Phys. Lett.
64
,
1341
(
1994
).
15.
F. J. Walker and R. A. McKee (unpublished).
16.
1 ML is defined as the concentration of atoms on the (001) surface of silicon, i.e., 6.78×1014atoms/cm2.
17.
R.
Droopad
et al.,
J. Cryst. Growth
227–228
,
936
(
2001
).
18.
Y.
Liang
,
S.
Gan
, and
M.
Engelhard
,
Appl. Phys. Lett.
79
,
3591
(
2001
).
19.
A.
Herrera-Gomez
,
F.S.
Aguirre-Tostado
,
Y.
Sun
,
P.
Pianetta
,
Z.
Yu
,
D.
Marshall
,
R.
Droopad
, and
W. E.
Spicer
,
J. Appl. Phys.
90
,
6070
(
2001
).
20.
X-ray photoelectron spectroscopy (XPS) would potentially provide the most useful data to answer this question. Given the fact that the “silicide” layer is submonolayer and provides a minimal signal compared to the silicon substrate and the near overlap of the 2p binding energy that exists in the peaks in an XPS spectrum for silicon (∼98.8–99.5 eV) and a silicide (∼99.5–99.8 eV), conclusive determination remains elusive.
21.
J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. E. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer Corp., Eden Prairie, MN, 1992).
22.
J. Wang (personal communication).
23.
V. G. Lifshits, A. A. Saranin, and A. V. Zotov, Surface Phases on Silicon: Preparation, Structures, and Properties, 1st ed. (Wiley, New York, 1994).
24.
W. A.
Henle
,
M. G.
Ramsey
,
F. P.
Netzer
, and
S.
Witzel
,
Surf. Sci.
243
,
141
(
1991
).
25.
W. C.
Fan
,
N. J.
Wu
, and
A.
Ignatiev
,
Phys. Rev. B
42
,
1254
(
1990
).
26.
J.
Kwo
et al.,
Appl. Phys. Lett.
77
,
130
(
2000
).
27.
J.
Kwo
et al.,
J. Appl. Phys.
89
,
3920
(
2001
).
28.
J. T.
Jones
,
E. T.
Croke
,
C. M.
Garland
,
O. J.
Marsh
, and
T. C.
McGill
,
J. Vac. Sci. Technol. B
16
,
2686
(
1998
).
29.
J. P.
Liu
,
P.
Zaumseil
,
E.
Bugiel
, and
H. J.
Osten
,
Appl. Phys. Lett.
79
,
671
(
2001
).
30.
D. K.
Fork
,
F. A.
Ponce
,
J. C.
Tramontana
, and
T. H.
Geballe
,
Appl. Phys. Lett.
58
,
2294
(
1991
).
31.
Y.
Kado
and
Y.
Arita
,
J. Appl. Phys.
61
,
2398
(
1987
).
32.
Y. Kado and Y. Arita, Extended Abstracts of the 18th (1986) International Conference on Solid State Devices and Materials, Tokyo, Japan, 1986, p. 45.
33.
H.
Mori
and
H.
Ishiwara
,
Jpn. J. Appl. Phys., Part 2
30
,
L1415
(
1991
).
34.
H.
Ishiwara
,
H.
Mori
,
K.
Jyokyo
, and
S.
Ueno
,
Mater. Res. Soc. Symp. Proc.
220
,
595
(
1991
).
35.
O.
Nakagawara
,
M.
Kobayashi
,
Y.
Yoshino
,
Y.
Katayama
,
H.
Tabata
, and
T.
Kawai
,
J. Appl. Phys.
78
,
7226
(
1995
).
36.
T.
Tambo
,
K.
Maeda
,
A.
Shimizu
, and
C.
Tatsuyama
,
J. Appl. Phys.
86
,
3213
(
1999
).
37.
R. A.
McKee
,
F. J.
Walker
,
J. R.
Conner
,
E. D.
Specht
, and
D. E.
Zelmon
,
Appl. Phys. Lett.
59
,
782
(
1991
).
38.
Y. Kado and Y. Arita, Extended Abstracts of the 20th (1988 International) Conference on Solid State Devices and Materials, Tokyo, Japan, 1988, p. 181.
39.
H.
Fukumoto
,
T.
Imura
, and
Y.
Osaka
,
Appl. Phys. Lett.
55
,
360
(
1989
).
40.
H.
Fukumoto
,
M.
Yamamoto
, and
Y.
Osaka
,
Proc.-Electrochem. Soc.
90
,
239
(
1990
).
41.
K.
Harada
,
H.
Nakanishi
,
H.
Itozaki
, and
S.
Yazu
,
Jpn. J. Appl. Phys., Part 1
30
,
934
(
1991
).
42.
S. C.
Choi
,
M. H.
Cho
,
S. W.
Whangbo
,
C. N.
Whang
,
S. B.
Kang
,
S. I.
Lee
, and
M. Y.
Lee
,
Appl. Phys. Lett.
71
,
903
(
1997
).
43.
M.-H.
Cho
,
D.-H.
Ko
,
Y. K.
Choi
,
I. W.
Lyo
,
K.
Jeong
,
T. G.
Kim
,
J. H.
Song
, and
C. N.
Whang
,
J. Appl. Phys.
89
,
1647
(
2001
).
44.
E. J.
Tarsa
,
J. S.
Speck
, and
McD.
Robinson
,
Appl. Phys. Lett.
63
,
539
(
1993
).
45.
H.
Nagata
,
M.
Yoshimoto
,
T.
Tsukahara
,
S.
Gonda
, and
H.
Koinuma
,
Mater. Res. Soc. Symp. Proc.
202
,
445
(
1991
).
46.
M.
Morita
,
H.
Fukumoto
,
T.
Imura
,
Y.
Osaka
, and
M.
Ichihara
,
J. Appl. Phys.
58
,
2407
(
1985
).
47.
Y.
Osaka
,
T.
Imura
,
Y.
Nishibayashi
, and
F.
Nishiyama
,
J. Appl. Phys.
63
,
581
(
1988
).
48.
H.
Myoren
,
Y.
Nishiyama
,
H.
Fukumoto
,
H.
Nasu
, and
Y.
Osaka
,
Jpn. J. Appl. Phys., Part 1
28
,
351
(
1989
).
49.
P.
Legagneux
,
G.
Garry
,
D.
Dieumegard
,
C.
Schwebel
,
C.
Pellet
,
G.
Gautherin
, and
J.
Siejka
,
Appl. Phys. Lett.
53
,
1506
(
1988
).
50.
H.
Fukumoto
,
T.
Imura
, and
Y.
Osaka
,
Jpn. J. Appl. Phys., Part 2
27
,
L1404
(
1988
).
51.
H.
Fukumoto
,
M.
Yamamoto
,
Y.
Osaka
, and
F.
Nishiyama
,
J. Appl. Phys.
67
,
2447
(
1990
).
52.
H.
Fukumoto
,
M.
Yamamoto
, and
Y.
Osaka
,
J. Appl. Phys.
69
,
8130
(
1991
).
53.
D. K.
Fork
,
D. B.
Fenner
,
G. A. N.
Connell
,
J. M.
Phillips
, and
T. H.
Geballe
,
Appl. Phys. Lett.
57
,
1137
(
1990
).
54.
D. K.
Fork
,
D. B.
Fenner
,
R. W.
Barton
,
J. M.
Phillips
,
G. A. N.
Connell
,
J. B.
Boyce
, and
T. H.
Geballe
,
Appl. Phys. Lett.
57
,
1161
(
1990
).
55.
D. K.
Fork
,
F. A.
Ponce
,
J. C.
Tramontana
,
N.
Newman
,
J. M.
Phillips
, and
T. H.
Geballe
,
Appl. Phys. Lett.
58
,
2432
(
1991
).
56.
D. B.
Fenner
,
A. M.
Viano
,
D. K.
Fork
,
G. A. N.
Connell
,
J. B.
Boyce
,
F. A.
Ponce
, and
J. C.
Tramontana
,
J. Appl. Phys.
69
,
2176
(
1991
).
57.
W.
Prusseit
,
S.
Corsépius
,
M.
Zwerger
,
P.
Berberich
,
H.
Kinder
,
O.
Eibl
,
C.
Jaekel
,
U.
Breuer
, and
H.
Kurz
,
Physica C
201
,
249
(
1992
).
58.
M.
Ishida
,
I.
Katakabe
,
T.
Nakamura
, and
N.
Ohtake
,
Appl. Phys. Lett.
52
,
1326
(
1988
).
59.
K.
Sawada
,
M.
Ishida
,
T.
Nakamura
, and
N.
Ohtake
,
Appl. Phys. Lett.
52
,
1672
(
1988
).
60.
H.
Iizuka
,
K.
Yokoo
, and
S.
Ono
,
Appl. Phys. Lett.
61
,
2978
(
1992
).
61.
H.
Wado
,
T.
Shimizu
, and
M.
Ishida
,
Appl. Phys. Lett.
67
,
2200
(
1995
).
62.
M.
Ihara
,
Microelectron. Eng.
1
,
161
(
1983
).
63.
M. Mikami, Y. Hokari, K. Egami, H. Tsuya, and M. Kanamori, Extended Abstracts of the 15th Conference on Solid State Devices and Materials (Japan Society Applied Physics, Tokyo, 1983), pp. 31–34.
64.
K.
Eisenbeiser
et al.,
Appl. Phys. Lett.
76
,
1324
(
2000
).
65.
Z.
Yu
,
J.
Ramdani
,
J. A.
Curless
,
C. D.
Overgaard
,
J. M.
Finder
,
R.
Droopad
,
K. W.
Eisenbeiser
,
J. A.
Hallmark
,
W. J.
Ooms
, and
V. S.
Kaushik
,
J. Vac. Sci. Technol. B
18
,
2139
(
2000
).
66.
M.
Yoshimoto
,
K.
Shimozono
,
T.
Maeda
,
T.
Ohnishi
,
M.
Kumagai
,
T.
Chikyow
,
O.
Ishiyama
,
M.
Shinohara
, and
H.
Koinuma
,
Jpn. J. Appl. Phys., Part 2
34
,
L688
(
1995
).
67.
C. D. Theis and D. G. Schlom, in High Temperature Materials Chemistry IX, edited by Karl Spear (Electrochemical Society, Pennington, NJ, 1997), Vol. 97–39, pp. 610–616.
68.
J. Lettieri, J. Rodriguez Contreras, V. Vaithyanathan, and D. G. Schlom (unpublished).
69.
E. G.
Keim
,
L.
Wolterbeek
, and
A. Van
Silfhout
,
Surf. Sci.
180
,
565
(
1987
).
70.
N. A.
Braaten
,
J. K.
Grepstad
,
S.
Raaen
, and
S. L.
Qui
,
Surf. Sci.
250
,
51
(
1991
).
71.
P.
Soukiassian
,
T. M.
Gentle
,
M. H.
Bakshi
, and
Z.
Hurych
,
J. Appl. Phys.
60
,
4339
(
1986
).
72.
Y.
Huttel
,
E.
Bourdie
,
P.
Soukkiassian
,
P. S.
Mangat
, and
Z.
Hurych
,
Appl. Phys. Lett.
62
,
2437
(
1993
).
73.
A.
Mesarwi
,
W. C.
Fan
, and
A.
Ignatiev
,
J. Appl. Phys.
68
,
3609
(
1990
).
74.
W. C.
Fan
and
A.
Ignatiev
,
Phys. Rev. B
44
,
3110
(
1991
).
75.
M. H.
Yang
and
C. P.
Flynn
,
Phys. Rev. Lett.
62
,
2476
(
1989
).
76.
K. T.
Jacob
and
V.
Varghese
,
J. Mater. Chem.
5
,
1059
(
1995
).
77.
T.
Waho
,
S.
Ogawa
, and
S.
Maruyama
,
Jpn. J. Appl. Phys.
16
,
1875
(
1977
).
78.
A.
Fischer
,
Z.
Feng
,
E.
Bykov
,
G.
Contreras-Puente
,
A.
Compaan
,
F.
de Landa Castillo-Alvarado
,
J.
Avendano
, and
A.
Mason
,
Appl. Phys. Lett.
70
,
3239
(
1997
).
79.
H.
Holzschuh
and
H.
Suhr
,
Appl. Phys. Lett.
59
,
470
(
1991
).
80.
H.
Schlotterer
,
Solid-State Electron.
11
,
947
(
1968
).
81.
A. C.
Ipri
and
J. N.
Zemel
,
J. Appl. Phys.
44
,
744
(
1973
).
82.
P. R.
Berger
,
K.
Chang
,
P.
Bhattacharya
,
J.
Singh
, and
K. K.
Bajaj
,
Appl. Phys. Lett.
53
,
684
(
1988
).
83.
J. Lettieri, J. H. Haeni, and D. G. Schlom (unpublished).
84.
V. V.
Il’chenko
,
G. V.
Kuznetsov
,
V. I.
Strikha
, and
A. I.
Tsyganova
,
Mikroelektronika
27
,
340
(
1998
)
V. V.
Il’chenko
,
G. V.
Kuznetsov
,
V. I.
Strikha
, and
A. I.
Tsyganova
, [
Russ. Microelectron
27
,
291
(
1998
)].
85.
V. V.
Il’chenko
and
G. V.
Kuznetsov
,
Pis'ma Zh. Tekh. Fiz.
27
,
58
(
2001
)
V. V.
Il’chenko
and
G. V.
Kuznetsov
, [
Tech. Phys. Lett.
27
,
333
(
2001
)].
86.
The destructive reaction at the alkaline earth oxide/Si interface has been observed over a range of temperatures from 580 to 630 °C depending on the quality of the interface and wafer vicinality. Never has the interface been seen to withstand temperatures above 700 °C.
87.
G. A.
Costa
,
M.
Ferretti
,
E. A.
Franceschi
, and
G. L.
Olcese
,
Thermochim. Acta
133
,
17
(
1988
).
88.
S. G.
Tresvyatskii
,
L. M.
Lopato
,
A. E.
Kushchevskii
, and
A. V.
Shevchenko
,
Inorg. Mater. (Transl. of Neorg. Mater.)
7
,
1681
(
1971
).
89.
S. G.
Tresvyatskii
,
V. N.
Pavlikov
,
L. M.
Lopato
, and
L. I.
Lugin
,
Inorg. Mater. (Transl. of Neorg. Mater.)
6
,
33
(
1970
).
90.
L. M.
Lopato
,
L. I.
Lugin
, and
A. V.
Shevchenko
,
Sov. Progr. Chem.
39
,
27
(
1973
).
91.
L. M.
Lopato
,
I. M.
Maister
, and
A. V.
Shevchenko
,
Inorg. Chem.
8
,
749
(
1972
).
This content is only available via PDF.
You do not currently have access to this content.