An in situ method based on attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR) is presented for detecting surface silicon hydrides on plasma deposited hydrogenated amorphous silicon (a-Si:H) films and for determining their surface concentrations. Surface silicon hydrides are desorbed by exposing the a-Si:H films to low energy ions from a low density Ar plasma and by comparing the infrared spectrum before and after this low energy ion bombardment, the absorptions by surface hydrides can sensitively be separated from absorptions by bulk hydrides incorporated into the film. An experimental comparison with other methods that utilize isotope exchange of the surface hydrogen with deuterium showed good agreement and the advantages and disadvantages of the different methods are discussed. Furthermore, the determination of the composition of the surface hydrogen bondings on the basis of the literature data on hydrogenated crystalline silicon surfaces is presented, and quantification of the hydrogen surface coverage is discussed.

1.
A.
Matsuda
,
Plasma Phys. Controlled Fusion
39
,
A431
(
1997
).
2.
M. C. M.
van de Sanden
,
W. M. M.
Kessels
,
R. J.
Severens
, and
D. C.
Schram
,
Plasma Phys. Controlled Fusion
41
,
A365
(
1999
).
3.
W. Luft and Y. S. Tsuo, Hydrogenated Amorphous Silicon Alloy Deposition Processes (Dekker, New York, 1993).
4.
R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, New York, 1991).
5.
M.
Stutzman
,
W. B.
Jackson
, and
C. C.
Tsai
,
Phys. Rev. B
32
,
23
(
1985
).
6.
H. M.
Branz
,
Phys. Rev. B
59
,
5498
(
1999
).
7.
Y.
Toyoshima
,
K.
Arai
,
A.
Matsuda
, and
K.
Tanaka
,
Appl. Phys. Lett.
56
,
1540
(
1990
).
8.
N.
Blayo
and
B.
Drevillon
,
J. Non-Cryst. Solids
137–138
,
771
(
1991
).
9.
M.
Katiyar
,
Y. H.
Yang
, and
J. R.
Abelson
,
J. Appl. Phys.
77
,
6247
(
1995
).
10.
J.
Knobloch
and
P.
Hess
,
Appl. Phys. Lett.
69
,
4041
(
1996
).
11.
S.
Miyazaki
,
H.
Shin
,
Y.
Miyoshi
, and
M.
Hirose
,
Jpn. J. Appl. Phys., Part 1
34
,
787
(
1995
).
12.
Y.
Miyoshi
,
Y.
Yoshida
,
S.
Miyazaki
, and
M.
Hirose
,
J. Non-Cryst. Solids
198–200
,
1029
(
1996
).
13.
Y.
Toyoshima
,
K.
Arai
,
A.
Matsuda
, and
K.
Tanaka
,
Appl. Phys. Lett.
57
,
1028
(
1990
).
14.
Y.
Toyoshima
,
K.
Arai
,
A.
Matsuda
, and
K.
Tanaka
,
J. Non-Cryst. Solids
137–138
,
765
(
1991
).
15.
R.
Nozawa
,
H.
Takeda
,
M.
Ito
,
M.
Hori
, and
T.
Goto
,
J. Appl. Phys.
85
,
1172
(
1999
).
16.
C.-M.
Chiang
,
S. M.
Gates
,
S. S.
Lee
,
M.
Kong
, and
S. F.
Bent
,
J. Phys. Chem. B
101
,
9537
(
1997
).
17.
D. C.
Marra
,
E. A.
Edelberg
,
R. L.
Naone
, and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
16
,
3199
(
1998
).
18.
N. J. Harrick, Internal Reflection Spectroscopy (Wiley, New York 1967).
19.
Y. J.
Chabal
,
Surf. Sci. Rep.
8
,
211
(
1988
).
20.
Y. J.
Chabal
,
G. S.
Higashi
, and
S. B.
Christman
,
Phys. Rev. B
28
,
4472
(
1983
).
21.
Y. J.
Chabal
and
K.
Raghavachari
,
Phys. Rev. Lett.
53
,
282
(
1984
).
22.
Y. J.
Chabal
and
K.
Raghavachari
,
Phys. Rev. Lett.
54
,
1055
(
1985
).
23.
V. A.
Burrows
,
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
S. B.
Christman
,
Appl. Phys. Lett.
53
,
998
(
1988
).
24.
Y. J.
Chabal
,
G. S.
Higashi
,
K.
Raghavachari
, and
V. A.
Burrows
,
J. Vac. Sci. Technol. A
7
,
2104
(
1989
).
25.
K. J.
Uram
and
U.
Jansson
,
J. Vac. Sci. Technol. B
7
,
1176
(
1989
).
26.
U.
Jansson
and
K. J.
Uram
,
J. Chem. Phys.
91
,
7978
(
1989
).
27.
K. J.
Uram
and
U.
Jansson
,
Surf. Sci.
249
,
105
(
1991
).
28.
Y. J. Chabal, in Internal Reflection Spectroscopy: Theory and Application, edited by F. M. Mirabella, Jr. (Dekker, New York, 1993), p. 191.
29.
P.
Jakob
,
P.
Dumas
, and
Y. J.
Chabal
,
Appl. Phys. Lett.
59
,
2968
(
1991
).
30.
P.
Jakob
,
Y. J.
Chabal
, and
K.
Raghavachari
,
Chem. Phys. Lett.
187
,
325
(
1991
).
31.
J. A.
Glass
Jr.
,
E. A.
Wovchko
, and
J. T.
Gates
, Jr.
,
Surf. Sci.
348
,
325
(
1996
).
32.
D. C. Marra, W. M. M. Kessels, M. C. M. van de Sanden, K. Kashefizadeh, and E. S. Aydil (unpublished).
33.
A. A.
Langford
,
M. L.
Fleet
,
B. P.
Nelson
,
W. A.
Lanford
, and
N.
Maley
,
Phys. Rev. B
45
,
13367
(
1992
).
34.
C.
Manfredotti
,
F.
Fizzotti
,
M.
Boero
,
P.
Pastorino
,
P.
Polesello
, and
E.
Vittone
,
Phys. Rev. B
50
,
18046
(
1994
).
35.
W. M. M.
Kessels
,
M. C. M.
van de Sanden
,
R. J.
Severens
,
L. J.
van IJzendoorn
, and
D. C.
Schram
,
Mater. Res. Soc. Symp. Proc.
507
,
529
(
1998
).
36.
W.
Beyer
and
M. S.
Abo Ghazala
,
Mater. Res. Soc. Symp. Proc.
507
,
601
(
1998
).
37.
M. H.
Brodsky
,
M.
Cardona
, and
J. J.
Cuomo
,
Phys. Rev. B
16
,
3556
(
1977
).
38.
The a-Si:H surface is not very well defined and it is not excluded that Si atoms bonded to the surface hydrogen are desorbed. This has no direct implications for the interpretation of the data.
39.
D. C.
Marra
,
E. A.
Edelberg
,
R. L.
Naone
, and
E. S.
Aydil
,
Appl. Surf. Sci.
133
,
148
(
1998
).
40.
Y.
Toyoshima
,
Thin Solid Films
234
,
367
(
1993
).
41.
A.
von Keudell
and
J. R.
Abelson
,
Phys. Rev. B
59
,
5791
(
1999
).
42.
L.
Genzel
and
T. P.
Martin
,
Surf. Sci.
34
,
33
(
1973
).
43.
D. A. G.
Bruggeman
,
Ann. Phys. (Leipzig)
24
,
636
(
1935
).
44.
S.
Yamasaki
,
T.
Umeda
,
J.
Isoya
, and
K.
Tanaka
,
J. Non-Cryst. Solids
227–230
,
83
(
1998
).
45.
S.
Ramalingam
,
S.
Sriraman
,
E. S.
Aydil
, and
D.
Maroudas
,
Appl. Phys. Lett.
78
,
2685
(
2001
).
46.
P. Jakob (private communication).
This content is only available via PDF.
You do not currently have access to this content.