The chemical nature and deposition rate of the silicon oxychloride films deposited on the chamber walls during Cl2/O2 plasma etching of Si were investigated using multiple total internal reflection-Fourier transform infrared spectroscopy. The differences in the infrared spectra of films deposited under different etching conditions were quantified through the Si–O and OSi–Cl absorption band intensities and positions to determine the growth rate and composition of these films. The changes in the film’s deposition rate and composition with rf bias power and O2 flow rate gave insight into the deposition mechanism. Based on our experimental observations, we propose that the silicon oxychloride film is deposited through oxidation of SiClx molecules adsorbed on the reactor walls and suggest a kinetic expression for the film deposition rate. This kinetic expression may also be used judiciously for describing the silicon oxychloride deposition on the sidewalls of etched features in gate etching and shallow trench isolation.

1.
K.
Blumenstock
,
J.
Theisen
,
P.
Pan
,
J.
Dulak
,
A.
Ticknor
, and
T.
Sandwick
,
J. Vac. Sci. Technol. B
12
,
54
(
1994
).
2.
S.
Nag
and
A.
Chatterjee
,
Solid State Technol.
40
,
129
(
1997
).
3.
A.
Chatterjee
et al.,
J. Vac. Sci. Technol. B
15
,
1936
(
1997
).
4.
C. K.
Yeon
and
H. J.
You
,
J. Vac. Sci. Technol. A
16
,
1502
(
1998
).
5.
F. H.
Bell
and
O.
Joubert
,
J. Vac. Sci. Technol. B
14
,
2493
(
1996
).
6.
F. H.
Bell
and
O.
Joubert
,
J. Vac. Sci. Technol. B
15
,
88
(
1997
).
7.
S. J.
Ullal
,
A. R.
Godfrey
,
L.
Braly
,
E. A.
Edelberg
,
V.
Vahedi
, and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
20
,
43
(
2002
).
8.
A. R.
Godfrey
,
S. J.
Ullal
,
L.
Braly
,
E. A.
Edelberg
,
V.
Vahedi
, and
E. S.
Aydil
,
Rev. Sci. Instrum.
72
,
3260
(
2001
).
9.
E. S.
Aydil
,
Z.
Zhen
,
K. P.
Giapis
,
Y.
Chabal
,
J. A.
Gregus
, and
R. A.
Gottscho
,
Appl. Phys. Lett.
62
,
3156
(
1993
).
10.
Y. J.
Chabal
,
Surf. Sci. Rep.
8
,
211
(
1988
).
11.
N. J. Harrick, Internal Reflection Spectroscopy (Interscience, New York, 1967).
12.
C. T.
Kirk
,
Phys. Rev. B
38
,
1255
(
1988
).
13.
O.
Sneh
,
M. L.
Wise
,
A. W.
Ott
,
L. A.
Okada
, and
S. M.
George
,
Surf. Sci.
334
,
135
(
1995
).
14.
S. J.
Lang
and
B. A.
Morrow
,
J. Phys. Chem.
98
,
13314
(
1994
).
15.
G.
Lucovsky
,
Sol. Energy Mater.
8
,
165
(
1982
).
16.
S. M.
Han
and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
14
,
2062
(
1996
).
17.
S. M.
Han
and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
15
,
2893
(
1997
).
18.
K. V.
Guinn
,
C. C.
Cheng
, and
V. M.
Donnelly
,
J. Vac. Sci. Technol. B
13
,
214
(
1995
).
19.
J. H.
Thomas
and
L. H.
Hammer
,
J. Appl. Phys.
68
,
2400
(
1990
).
20.
C. J.
Mogab
and
H. J.
Levinstein
,
J. Vac. Sci. Technol.
17
,
721
(
1980
).
21.
H. B.
Pogge
,
J. A.
Bondur
, and
P. J.
Burkhardt
,
J. Electrochem. Soc.
130
,
1592
(
1983
).
22.
G. C. H.
Zau
and
H. H.
Sawin
,
J. Electrochem. Soc.
139
,
250
(
1992
).
23.
V. M.
Donnelly
and
N.
Layadi
,
J. Vac. Sci. Technol. A
16
,
1571
(
1998
).
24.
D. J.
Thomas
,
P.
Southworth
,
M. C.
Flowers
, and
R.
Greef
,
J. Vac. Sci. Technol. B
7
,
1325
(
1989
).
25.
S. C.
McNevin
,
J. Vac. Sci. Technol. B
8
,
1185
(
1990
).
26.
G. P.
Kota
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Vac. Sci. Technol. A
16
,
270
(
1998
).
27.
G. P.
Kota
,
J. W.
Coburn
, and
D. B.
Graves
,
J. Appl. Phys.
85
,
74
(
1999
).
This content is only available via PDF.
You do not currently have access to this content.