Understanding the atomic bonding properties at the interface between thin films is crucial to a number of key modern technical devices, including semiconductor integrated circuits, magnetic recording media, batteries, and even solar cells. Semiconducting materials such as titanium nitride (TiNx) are widely used in the manufacturing of modern electronic devices, requiring a wealth of information about its electronic structure. We present data from soft x-ray emission, soft x-ray absorption, and Rutherford backscattering spectroscopy experiments involving a sample consisting of a 40 nm TiN layer on top of an aluminum film 600 nm thick. Soft x-ray emission spectroscopy and near-edge x-ray absorption fine structure (NEXAFS) spectroscopy are tools that provide a nondestructive, atomic site-specific probe of the interface, where the electronic structure of the material can be mapped out element by element. Rutherford backscattering spectroscopy (RBS) measurements supply data on the elemental composition and depth profiling of the sample. From these measurements, we show that the Ti and the N diffuse into the Al film to form an equivalent material depth of about 4.5 nm, and the NEXAF structure reveals that the nitrogen has probably formed AlN, and the Ti has also diffused to form a titanium–aluminum compound.

1.
W. Monch, Semiconductor Surfaces and Interfaces (Springer, New York, 1993).
2.
C. G. H.
Walker
,
J. A. D.
Matthew
,
C. A.
Anderson
, and
N. M. D.
Brown
,
Surf. Sci.
412/413
,
405
(
1998
).
3.
D. W.
Fischer
and
W. L.
Baun
,
J. Appl. Phys.
39
,
4757
(
1968
).
4.
M.
Minato
and
Y.
Itoh
,
J. Vac. Sci. Technol. A
13
,
540
(
1995
).
5.
B.
Karlsson
and
C.-G.
Ribbing
,
Proc. SPIE
324
,
52
(
1982
).
6.
H. E.
Rebenne
and
D. G.
Bhat
,
Surf. Coat. Technol.
63
,
1
(
1994
).
7.
Y.
Claesson
,
M.
Georgson
,
A.
Roos
, and
C.-G.
Ribbing
,
Sol. Energy Mater.
20
,
455
(
1990
).
8.
M.
Eizenberg
,
MRS Bull.
20
,
38
(
1995
).
9.
D. L.
Ederer
,
J. A.
Carlisle
,
J.
Jimenez
,
J. J.
Jia
,
K.
Osborn
,
T. A.
Callcott
,
R. C. C.
Perera
,
J. H.
Underwood
,
L. J.
Terminello
,
A.
Asfaw
, and
F. J.
Himpsel
,
J. Vac. Sci. Technol. A
14
,
859
(
1996
).
10.
K. M.
Glassford
and
J. R.
Chelikowsky
,
Phys. Rev. B
46
,
1284
(
1992
).
11.
L. D.
Finkelstein
,
E. Z.
Kurmaev
,
M. A.
Korotin
,
A.
Moewes
,
B.
Schneider
,
S. M.
Butorin
,
J.-H.
Guo
,
J.
Nordren
,
D.
Hartmann
,
M.
Neumann
, and
D. L.
Ederer
,
Phys. Rev. B
60
,
2212
(
1999
).
12.
J.
Barth
,
F.
Gerken
, and
C.
Kunz
,
Phys. Rev. B
31
,
2022
(
1985
).
13.
J. J.
Jia
,
T. A.
Callcott
,
J.
Yurkas
,
A. W.
Ellis
,
F. J.
Himpsel
,
M. G.
Samant
,
J.
Stohr
,
D. L.
Ederer
,
J. A.
Carlisle
,
E. A.
Hudson
,
L. J.
Terminello
,
D. K.
Shuh
, and
R. C. C.
Perera
,
Rev. Sci. Instrum.
66
,
1394
(
1995
).
14.
E.
Tegeler
,
N.
Kosuch
,
G.
Weich
, and
A.
Faessler
,
Phys. Status Solidi B
84
,
561
(
1977
).
15.
J.
Jimenez-Meier
,
J.
van Ek
,
D. L.
Ederer
,
T. A.
Callcott
,
J. J.
Jia
,
J.
Carlisle
,
L.
Terminello
,
A.
Asfaw
, and
R. C. C.
Perera
,
Phys. Rev. B
59
,
2649
(
1999
).
16.
F.
Link
,
H.
Baumann
, and
K.
Bethge
,
Nucl. Instrum. Methods Phys. Res. B
161–163
,
1095
(
2000
).
17.
N. P.
Barradas
,
A. P.
Knights
,
C.
Jeynes
,
O. A.
Mironov
,
T. J.
Grasby
, and
E. H. C.
Parker
,
Phys. Rev. B
59
,
5097
(
1999
).
18.
L.
Doolittle
,
Nucl. Instrum. Methods Phys. Res. B
45
,
344
(
1985
).
19.
B. L.
Henke
,
E. M.
Gullikson
, and
J. C.
Davis
,
At. Data Nucl. Data Tables
54
,
181
(
1993
).
20.
J.
Jaklevic
,
J. A.
Kirby
,
M. P.
Klein
,
A. S.
Robertson
,
G. S.
Brown
, and
P.
Eisenberger
,
Solid State Commun.
23
,
679
(
1997
).
21.
K.
Lawniczak-Jablonska
,
T.
Suski
,
I.
Gorczyca
,
N. E.
Christensen
,
K. E.
Attenkofer
,
E. M.
Gullikson
,
J. H.
Underwood
,
D. L.
Ederer
,
R. C. C.
Perera
, and
Z. Liliental
Weber
,
Phys. Rev. B
61
,
16623
(
2000
).
This content is only available via PDF.
You do not currently have access to this content.