This article proposes a new approach for etch endpoint detection of small open area wafers. The traditional endpoint detection technique uses a few manually selected wavelengths, which are adequate for large open areas. As the integrated circuit devices continue to shrink in geometry and increase in device density, detecting the endpoint for small open areas presents a serious challenge to process engineers. In this work, a high-resolution optical emission spectroscopy (OES) system is used to provide the necessary sensitivity for detecting subtle endpoint signals. Principal component analysis is used to analyze the OES data and extract key components that capture the endpoint signal. Data analysis from many wafers shows that the endpoint pattern in the principal components is repeatable. Two methods are used to select wavelengths so as to improve reliability and reduce susceptibility to noise. The first method is to remove those spectrum windows that contain no endpoint information. The second method is to use a “sphere” criterion to select the most relevant wavelengths. The final endpoint algorithm using a much-reduced number of wavelengths shows more distinguishable and reliable endpoint features.

1.
G. S. Selwyn, Optical Diagnostic Techniques for Plasma Processing (AVS, New York, 1993).
2.
J. G.
Shabushnig
and
P. R.
Demko
, “
Applications of optical emission spectroscopy to semiconductor processing
,”
Am. Lab. (Shelton, Conn.)
16
,
60
(
1984
).
3.
I. P. Herman, Optical Diagnostics for Thin Film Processing (Academic, New York, 1996).
4.
P. H.
Singer
,
Semicond. Int.
11
,
66
70
(
1988
).
5.
P. Biolsi, D. Morvay, L. Drachnik, and S. Ellinger, IEEE/SEMI Advanced Semiconductor Manufacturing Conference (1996), pp. 391–396 (unpublished).
6.
E. A.
Rietman
,
R. C.
Frye
,
E. R.
Lory
, and
T. R.
Harry
,
J. Vac. Sci. Technol. B
11
,
1314
(
1993
).
7.
R.
Mundt
,
Electrochemical Society Proceedings
(
1995
), Vol.
95-4
, pp.
178
188
(unpublished).
8.
R. L.
Allen
,
R.
Moore
, and
M.
Whelan
,
J. Vac. Sci. Technol. B
14
,
498
(
1996
).
9.
S.
Limanond
and
J.
Si
,
J. Vac. Sci. Technol. B
16
,
2707
(
1998
).
10.
H. M. Anderson, FACSS Conference, Austin, TX (1998) (unpublished).
11.
N. B. Gallagher and B. M. Wise, AEC/APC Symposium XI, Vail, CO (1999) (unpublished).
12.
H. Yue, S. J. Qin, and A. J. Toprac, TWMCC Fall Meeting, Madison, WI (1998) (unpublished).
13.
H. Yue, S. J. Qin, A. J. Toprac, and J. Wiseman, AIChE Annual Meeting, Dallas, TX (1999) (unpublished).
14.
A. J. Toprac, J. Wiseman, and H. Yue, Patent pending.
15.
D.
White
,
B. E.
Goodlin
,
A. E.
Gower
,
D. S.
Boning
,
H.
Chen
,
H. H.
Sawin
, and
T. J.
Dalton
,
IEEE Trans. Semicond. Manuf.
13
,
193
(
2000
).
16.
D. Angell and C. J. Radens, U.S. Patent No. 5288367 (1994).
17.
I. T. Jolliffe, Principal Component Analysis (Springer, Berlin, 1986).
18.
J. E. Jackson, A User’s Guide to Principal Components (Wiley-Interscience, New York, 1991).
19.
J.
Kresta
,
J. F.
MacGregor
, and
T. E.
Marlin
,
Can. J. Chem. Eng.
69
,
35
(
1991
).
20.
B. M.
Wise
and
N. B.
Gallagher
,
J. Proc. Cont.
6
,
329
(
1996
).
21.
M. P.
Splichal
and
H. M.
Anderson
,
Proc. SPIE
1594
,
189
(
1991
).
22.
R.
Chen
,
H.
Huang
,
C. J.
Spanos
, and
M.
Gatto
,
J. Vac. Sci. Technol. A
14
,
1901
(
1996
).
23.
S. J. Qin, H. Yue, R. Markle, C. Nauert, and M. Gatto, AIChE Annual Meeting, Los Angeles (1997) (unpublished).
24.
N. B. Gallagher, B. M. Wise, S. W. Butler, D. D. White, and G. G. Barna, Proc. of ADCHEM 97, Banff, Canada (1997), pp. 78–83 (unpublished).
25.
D. A.
White
,
D.
Boning
,
S. W.
Butler
, and
G. G.
Barna
,
IEEE Trans. Semicond. Manuf.
10
,
52
(
1997
).
26.
I. T.
Jolliffe
,
Appl. Stat.
21
,
160
(
1972
).
27.
I. T.
Jolliffe
,
Appl. Stat.
22
,
21
(
1973
).
28.
H. Yue and S. J. Qin, Ind. and Eng. Chem. Res. (submitted).
29.
J. Wiseman, A. Toprac, C. Foster, and J. Stevenson, AEC/APC Symposium XI, Vail, CO, 1999 (unpublished).
This content is only available via PDF.
You do not currently have access to this content.