Atomistic simulations are used to study thin-film growth through the deposition of beams of adamantane molecules on hydrogen-terminated diamond (111) surfaces. A range of incident velocities from 13 to 17 km/s (corresponding to kinetic energies of 119–204 eV/molecule) are considered that fall in the hyperthermal energy region for particle deposition on surfaces. The forces on the atoms in the simulations are calculated using a many-body reactive empirical potential for hydrocarbons. During the deposition process the adamantane molecules react with one another and the surface to form hydrocarbon thin films that are primarily polymeric with the amount of adhesion depending strongly on incident energy. Despite the fact that the carbon atoms in the adamantane molecules are fully sp3 hybridized, the films contain primarily sp2 hybridized carbon with the percentage of sp2 hybridization increasing as the incident velocity goes up. These results are compared with the predictions of simulations that examine the deposition of ethylene molecular and cluster beams.

1.
M. B. J.
Wijesundara
,
L.
Hanley
,
B.
Ni
, and
S. B.
Sinnott
,
Proc. Natl. Acad. Sci. U.S.A.
97
,
23
(
2000
).
2.
E. T.
Ada
,
O.
Kornienko
, and
L.
Hanley
,
J. Phys. Chem. B
102
,
3959
(
1998
).
3.
W. M.
Lau
and
R. W. M.
Kwok
,
Int. J. Mass Spectrom. Ion Processes
174
,
245
(
1998
).
4.
H.
Usui
,
Thin Solid Films
365
,
22
(
2000
).
5.
J. C.
Angus
and
C. C.
Hayman
,
Science
241
,
913
(
1988
).
6.
K. E.
Spear
,
J. Am. Ceram. Soc.
72
,
171
(
1989
).
7.
L.
Diederich
,
E.
Barborini
,
P.
Piseri
,
A.
Podesta
,
P.
Milani
,
A.
Schneuwly
, and
R.
Gallay
,
Appl. Phys. Lett.
75
,
2662
(
1999
).
8.
V.
Paillard
,
P.
Melinon
,
V.
Dupuis
,
A.
Perez
,
J. P.
Perez
,
G.
Guiraud
,
J.
Fornazero
, and
G.
Panczer
,
Phys. Rev. B
49
,
11433
(
1994
).
9.
E. E. B.
Campbell
and
I. V.
Hertel
,
Nucl. Instrum. Methods Phys. Res. B
112
,
48
(
1996
).
10.
W.
Christen
and
U.
Even
,
J. Phys. Chem. A
102
,
9420
(
1998
).
11.
D.
Donadio
,
L.
Colombo
,
P.
Milani
, and
G.
Benedek
,
Phys. Rev. Lett.
83
,
776
(
1999
).
12.
M.
Kerford
and
R. P.
Webb
,
Carbon
37
,
859
(
1999
).
13.
S. B. Sinnott, L. Qi, O. A. Shenderova, and D. W. Brenner, in Molecular Dynamics of Clusters, Surfaces, Liquids, and Interfaces, edited by W. Hase Advances in Classical Trajectory Methods, Vol. IV (JAI, Stamford, CT, 1999), Chap. 1, pp. 1–26.
14.
L.
Qi
and
S. B.
Sinnott
,
J. Phys. Chem. B
101
,
6883
(
1997
).
15.
L.
Qi
,
W. L.
Young
, and
S. B.
Sinnott
,
Surf. Sci.
426
,
83
(
1999
).
16.
L.
Qi
and
S. B.
Sinnott
,
Nucl. Instrum. Methods Phys. Res. B
140
,
39
(
1998
).
17.
T. A. Plaisted, B. Ni, J. D. Zahrt, and S. B. Sinnott, Thin Solid Films (in press).
18.
D. W.
Brenner
,
Phys. Status Solidi B
217
,
23
(
2000
).
19.
Z.
Mao
,
A.
Garg
, and
S. B.
Sinnott
,
Nanotechnology
10
,
273
(
1999
).
20.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University Press, New York, 1987).
21.
P.
De Sainte Claire
,
K.
Son
,
W. L.
Hase
, and
D. W.
Brenner
,
J. Phys. Chem.
100
,
1761
(
1996
).
22.
M. O.
Watanabe
,
N.
Uchida
, and
T.
Kanayama
,
Phys. Rev. B
61
,
7219
(
2000
).
23.
See, for example, R. C. Fort, Jr., Adamantane: The Chemistry of Diamond Molecules (Marcel Dekker, New York, 1976).
This content is only available via PDF.
You do not currently have access to this content.