The lattice damage of a diamond crystal, caused by the analysis beam of helium ions with 2.0 MeV, 3 nA at room temperature, was characterized by nondestructive optical absorption topographic imaging that used position-sensitive scanning spectroscopy in the transmission mode. The result showed that the atomic structure and electronic states in diamond have been significantly changed by the ion beam, even at very low dose or dose rate. The measurement has been applied to the artificial diamond crystal (type Ib) to evaluate how the damage induced by Rutherford backscattering/channeling, and the comparison to ion implantation (H2+) is given. We found that a high column image, which reflects the defective states in irradiated synthetic diamond, provides a qualitative estimation of damage.

1.
M. S. Dresselhaus and R. Kalish, Ion Implantation in Diamond, Graphite and Related Materials (Springer, Berlin, 1992), pp. 30.
2.
J. F.
Prins
,
Mater. Sci. Rep.
7
,
271
(
1992
).
3.
C. D. Clark, A. T. Collins, and G. S. Woods, in The Properties of Natural and Synthetic Diamond, edited by J. E. Field (Academic, London, 1992), pp. 35.
4.
J. F.
Prins
,
Appl. Phys. Lett.
41
,
950
(
1982
).
5.
S.
Prawer
,
A. D.
Devir
,
L. S.
Balfour
, and
R.
Kalish
,
Appl. Opt.
34
,
636
(
1995
).
6.
J. F. Prins, in Application of Diamond Films and Related Materials, edited by Y. Tzeng, M. Yoshikawa, M. Murakawa, and A. Feldman (Elsevier Science, New York, 1991), pp. 327–334.
7.
J. F.
Prins
,
Diamond Relat. Mater.
4
,
580
(
1995
).
8.
J. F.
Prins
,
Diamond Relat. Mater.
7
,
545
(
1998
).
9.
P. F. Lai and S. Prawer, Proceedings of the International Conference on Ion Beam Modification of Materials (Canberra, 1995), pp. 1003–1007.
10.
J.
Orwa
,
D. N.
Jamieson
,
K. W.
Nugent
,
S.
Prawer
, and
R.
Kalish
,
Nucl. Instrum. Methods Phys. Res. B
124
,
515
(
1997
).
11.
K.
Okano
,
S.
Koizumi
,
S. R. P.
Silva
, and
G. A. J.
Amara-tunga
,
Nature (London)
381
,
140
(
1996
).
12.
J.
Robertson
,
Adv. Phys.
35
,
317
(
1986
).
13.
H.
Tsai
and
D. B.
Bogy
,
J. Vac. Sci. Technol. A
5
,
3287
(
1987
).
14.
G. A. J.
Amaratunga
and
S. R. P.
Silva
,
Appl. Phys. Lett.
68
,
2529
(
1996
).
15.
S. Prawer, K. W. Nugent, and D. N. Jamieson (unpublished).
16.
Z. Q.
Ma
,
Y. F.
Zheng
, and
H.
Naramoto
,
Appl. Surf. Sci.
119
,
181
(
1997
).
17.
Z. Q.
Ma
,
B. X.
Liu
,
H.
Naramoto
,
Y.
Aoki
,
S.
Yamamoto
,
H.
Takeshita
, and
P. C.
Goppelt-Langer
,
Vacuum
55
,
207
(
1999
).
18.
S.
Prawer
and
R.
Kalish
,
Phys. Rev. B
51
,
15
711
(
1995
).
19.
H.
Hofsass
,
M.
Dalmer
,
M.
Restle
, and
C.
Ronning
,
J. Appl. Phys.
81
,
2566
(
1997
).
20.
W. M.
Lau
,
L. J.
Huang
,
I.
Bello
, and
Y. M.
Yiu
,
J. Appl. Phys.
75
,
3385
(
1994
).
21.
A.
Uedono
,
T.
Kawano
,
S.
Tanigawa
,
R.
Suzuki
,
T.
Ohdaira
,
T.
Mikado
,
S.
Fujii
, and
S.
Shikata
,
Jpn. J. Appl. Phys., Part 1
34
,
1772
(
1995
).
22.
J. F. Ziegler, J. P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).
23.
Z. Q.
Ma
and
H.
Naramoto
,
Solid-State Electron.
41
,
487
(
1997
).
24.
J. D.
Hunn
,
S. P.
Withrow
,
C. W.
White
, and
D. M.
Hembree
,
Phys. Rev. B
52
,
8106
(
1995
).
25.
R.
Kalish
and
S.
Prawer
,
Nucl. Instrum. Methods Phys. Res. B
106
,
492
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.