The effects of boron on Co and Si1−xGex interfacial reaction were studied. Undoped and in situ boron-doped strained Si0.91Ge0.09 and Si0.86Ge0.14 layers prepared at 550 °C by an ultrahigh vacuum chemical vapor deposition system were subjected to Co silicidation at various rapid thermal annealing (RTA) temperatures ranging from 500 to 1000 °C. The resulting films were characterized by a sheet resistance measurement, Auger electron spectroscopy, x-ray diffractometry (XRD), high resolution x-ray diffractometry, secondary ion mass spectroscopy, scanning electron microscopy, and transmission electron microscopy. Seen from XRD spectroscopy, a Co(Si1−yGey) cubic structure was formed with RTAs ranging from 500 to 700 °C. For boron-doped samples, the CoGe fraction in Co(Si1−yGey) was less than that in undoped samples, indicating that boron atoms retarded the incorporation of Ge into the Co(Si1−yGey) ternary phase. It also led to a large Ge pileup at the interface between the Co-rich and silicidation regions. On the other hand, from the high resolution x-ray spectra, the presence of boron led to less relaxation of the strained Si1−xGex lattice. It is the first time that small boron atoms inhibiting the relaxation of the Si1−xGex layer during silicidation was observed. Furthermore, from the sheet resistance measurement, the formation of CoSi2 was found to be slightly retarded in boron-doped samples, due probably to the decrease of Co or Si diffusivities as a result of boron accumulation at the Co/SiGe reaction interface. At temperatures above 800 °C, CoSi2 formed and Ge segregated to the silicide boundaries and the upper reaction region was discovered. These phenomena caused by B dopants are explained in detail.

1.
X.
Xiao
,
C.
Sturm
,
S. R.
Parihar
,
S. A.
Lyon
,
D.
Meyerhofer
,
S.
Palfery
, and
F. V.
Shallcross
,
IEEE Electron Device Lett.
EDL-14
,
199
(
1993
).
2.
G. L.
Patton
,
J. H.
Comfort
,
B. S.
Meyerson
,
E. F.
Crabbe
,
B.
De Fresart
,
J. M. C.
Stork
,
J. Y. C.
Sun
,
D. L.
Harame
, and
J. M.
Burgatz
,
IEEE Electron Device Lett.
EDL-11
,
171
(
1990
).
3.
J. M.
Stork
,
E. J.
Prinz
, and
C. W.
Magee
,
IEEE Electron Device Lett.
EDL-12
,
303
(
1991
).
4.
P. M. Garone, V. Venkataraman, and J. C. Sturm, Tech. Dig. Int. Electron Devices Meet. 90 (1990).
5.
H.
Kanaya
,
F.
Hasegawa
,
E.
Yamaka
,
T.
Moriyama
, and
M.
Nakajima
,
Jpn. J. Appl. Phys., Part 1
28
,
544
(
1989
).
6.
Q. Z.
Hong
and
J. W.
Mayer
,
J. Appl. Phys.
66
,
611
(
1989
).
7.
H. K.
Liou
,
X.
Wu
, and
U.
Gennser
,
Appl. Phys. Lett.
60
,
577
(
1992
).
8.
R. D.
Thompson
,
K. N.
Tu
,
J.
Angillelo
,
S.
Delage
, and
S. S.
Iyer
,
J. Electrochem. Soc.
135
,
3161
(
1988
).
9.
O.
Thomas
,
F. M.
D’Heurle
,
S.
Delage
, and
G.
Scilla
,
Appl. Surf. Sci.
38
,
27
(
1989
).
10.
O.
Thomas
,
F. M.
D’Heurle
, and
S.
Delage
,
J. Mater. Res.
5
,
1453
(
1990
).
11.
W.-J.
Qi
,
B.-Z.
Li
,
W.-N.
Huang
, and
Z.-Q.
Gu
,
J. Appl. Phys.
77
,
1086
(
1995
).
12.
Z.
Wang
,
Y. L.
Chen
,
H.
Ying
,
R. J.
Nemanich
, and
D. E.
Sayers
,
Mater. Res. Soc. Symp. Proc.
320
,
397
(
1994
).
13.
A.
Buxbaum
,
M.
Eizenberg
,
A.
Raizman
, and
F.
Schäffler
,
Appl. Phys. Lett.
59
,
665
(
1991
).
14.
M. C.
Ridgway
,
R. G.
Elliman
,
N.
Hauser
,
J.-M.
Baribeau
, and
T. E.
Jackman
,
Mater. Res. Soc. Symp. Proc.
260
,
857
(
1992
).
15.
F.
Lin
,
G.
Sarcona
,
M. K.
Hatalis
,
A. F.
Cserhati
,
E.
Austin
, and
D. W.
Greve
,
Thin Solid Films
250
,
20
(
1994
).
16.
M.
Glück
,
A.
Schuppen
,
M.
Rösler
,
W.
Heinrich
,
J.
Hersener
,
U.
König
,
O.
Yam
,
C.
Cytermann
, and
M.
Eizenberg
,
Thin Solid Films
270
,
549
(
1995
).
17.
A.
Appelbaum
,
R. V.
Knoell
, and
S. P.
Murarka
,
J. Appl. Phys.
57
,
1880
(
1985
).
18.
G.
Ottaviani
,
K. N.
Tu
,
P.
Psaras
, and
C.
Nobili
,
J. Appl. Phys.
62
,
2290
(
1987
).
19.
S. P.
Ashburn
,
M. C.
Öztürk
,
G.
Harris
, and
D. M.
Maher
,
J. Appl. Phys.
74
,
4455
(
1993
).
20.
F.
Wald
and
S. J.
Michalik
,
J. Less-Common Met.
24
,
277
(
1971
).
21.
M. C.
Ridgway
,
R. G.
Elliman
,
R.
Pascual
,
J. L.
Whitton
, and
J.-M.
Baribeau
,
Mater. Res. Soc. Symp. Proc.
311
,
155
(
1993
).
22.
C.
Zaring
,
A.
Pisch
,
J.
Cardenas
,
P.
Gas
, and
B. G.
Svensson
,
J. Appl. Phys.
80
,
2742
(
1996
).
23.
C.
Cytermann
,
E.
Holzman
,
R.
Brener
,
M.
Fastow
,
M.
Eizenberg
,
M.
Glück
,
H.
Kibbel
, and
U.
König
,
J. Appl. Phys.
83
,
2019
(
1998
).
24.
L. P.
Chen
,
C. T.
Chou
,
G. W.
Huang
, and
C. Y.
Chang
,
Appl. Phys. Lett.
67
,
3001
(
1995
).
25.
P. L.
Smith
,
C. M.
Osburn
,
D. S.
Wen
, and
G.
McGuire
,
Mater. Res. Soc. Symp. Proc.
160
,
299
(
1990
).
26.
W. M.
Chen
,
S.
Pozder
,
Y.
Limb
,
A. R.
Sitaram
, and
B.
Fiordalice
,
Mater. Res. Soc. Symp. Proc.
429
,
163
(
1996
).
27.
A.
Eyal
,
R.
Brener
,
R.
Beserman
,
M.
Eizenberg
,
Z.
Atzmon
,
D. J.
Smith
, and
J. W.
Mayer
,
Appl. Phys. Lett.
69
,
64
(
1996
).
28.
Z.
Wang
,
D. B.
Aldrich
,
Y. L.
Chen
,
D. E.
Sayers
, and
R. J.
Nemanich
,
Thin Solid Films
270
,
555
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.