The charging damage from metal etching and dielectric etching was studied using metal–oxide–semiconductor devices with an oxide thickness of 1.9–6.0 nm, and the impact of the charging on reliability of scaled-down devices, as well as damage monitoring methods appropriate for each plasma process and oxide thickness, were investigated. For metal etching, in which the electron shading effect is a major cause of charging, hot carrier degradation dominated oxide degradation for oxides of 3.5–6.0 nm. For thinner oxides (<3.0 nm), however, a gate leakage failure dominated, but the failure rate decreased with gate oxide thinning below 3.0 nm and became negligibly small below 2.2 nm. For dielectric etching, the gate leakage current was an effective damage monitor. To detect the latent damage accurately, use of a high oxide electric field of 5–9 MV/cm was effective. Like the metal etching damage, the failure rate was lower for a thinner oxide of <3.0 nm. The hot carrier degradation was less sensitive to the dielectric etching damage. To realize a plasma process with low damage and thus to improve the device reliability, time-modulated (TM) plasmas were applied to the electron cyclotron resonance (ECR) metal etcher, the ultrahigh frequency (UHF) dielectric etcher, and the inductively coupled plasma (ICP) polysilicon etcher. These etchers all showed reduced charging damage compared to the conventional continuous-wave plasma. The estimated amount of charges that passed through the gate oxide was reduced to about 1/4 in the ECR metal etcher. The oxide yield improved by about two times in the UHF dielectric etcher. The density of oxide traps decreased in the ICP polysilicon etcher. Thus, an application of the TM plasma for etching is practical and effective for fabricating large scale integrated circuits with high yield and reliability.
Skip Nav Destination
Article navigation
July 2000
The 46th international symposium of the american vacuum society
25-29 October 1999
Seattle, Washington (USA)
Research Article|
July 01 2000
Characterization of process-induced charging damage in scaled-down devices and reliability improvement using time-modulated plasma
Ko Noguchi;
Ko Noguchi
ULSI Device Development Division, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa, 229-1198 Japan
Search for other works by this author on:
Seiji Samukawa;
Seiji Samukawa
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
Search for other works by this author on:
Hiroto Ohtake;
Hiroto Ohtake
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
Search for other works by this author on:
Tomonori Mukai
Tomonori Mukai
Silicon Systems Research Laboratories, NEC Corporation, 34 Miyukigaoka, Tsukuba, Ibaraki 305-8501, Japan
Search for other works by this author on:
J. Vac. Sci. Technol. A 18, 1431–1436 (2000)
Article history
Received:
October 04 1999
Accepted:
March 08 2000
Citation
Ko Noguchi, Seiji Samukawa, Hiroto Ohtake, Tomonori Mukai; Characterization of process-induced charging damage in scaled-down devices and reliability improvement using time-modulated plasma. J. Vac. Sci. Technol. A 1 July 2000; 18 (4): 1431–1436. https://doi.org/10.1116/1.582366
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00