We have investigated mechanical properties of diamond-like carbon (DLC) thin films, particularly the internal compressive stress and ways to alleviate it. Foreign atoms such as copper, titanium, and silicon were incorporated into the DLC films during pulsed laser deposition. The chemical composition of the doped films was determined using Rutherford backscattering spectrometry (RBS) and x-ray photoelectron spectroscopy (XPS). Optical microscopy of the doped films showed that DLC films containing Cu exhibit much less particulate density as compared to the films containing Ti and Si. Visible Raman spectroscopy was used to characterize the films. The effect of dopants on the Raman spectrum was analyzed in terms of peak shape and position. Optical microscopy of the pure DLC of a certain thickness showed severe buckling. The mechanisms of adhesion associated with DLC coatings were discussed. Qualitative scratch tests on the specimens showed that pure DLC films have relatively poor adhesion due to a large compressive stress, while the doped DLC films exhibit much improved adhesion. Wear tests show improved wear resistance in the doped DLC coatings. Nanoindentation results suggest that pure DLC has an average hardness above 40 GPa and effective Young’s modulus above 200 GPa. The doped DLC films showed slightly decreased hardness and Young’s modulus as compared to pure DLC films. These results can be rationalized by analyzing the internal stress reduction as derived from Raman G-peak shift to lower wavenumbers. A preliminary interpretation of the stress reduction mechanism is discussed.

1.
H. W.
Kroto
,
J. R.
Heath
,
S. C.
O’Brien
,
R. F.
Curl
, and
R. E.
Smalley
,
Nature (London)
318
,
162
(
1985
).
2.
S.
Iijima
,
Nature (London)
354
,
56
(
1991
).
3.
Carbon Nanotubes: Preparation and Properties, edited by T. W. Ebbesen (CRC Press, Boca Raton, FL, 1997).
4.
J.
Robertson
,
Prog. Solid State Chem.
21
,
199
(
1991
).
5.
P. W. Atkins, Physical Chemistry, 5th ed. (W. H. Freeman and Company, San Francisco, 1994).
6.
W. I.
Milne
,
J. Non-Cryst. Solids
198–200
,
605
(
1996
).
7.
A.
Bozhko
,
A.
Ivanov
,
M.
Berrettoni
,
S.
Chudinov
,
S.
Stizza
,
V.
Dorfman
, and
B.
Pypkin
,
Diamond Relat. Mater.
4
,
488
(
1995
).
8.
J.
Krishnaswamy
,
A.
Rengan
,
J.
Narayan
,
K.
Vedom
, and
C. J.
McHorgue
,
Appl. Phys. Lett.
54
,
2455
(
1989
).
9.
T.
Sato
,
S.
Furuno
,
S.
Ifuchi
, and
M.
Hanabusa
,
Jpn. J. Appl. Phys., Part 1
26
,
1487
(
1987
).
10.
D. L.
Pappas
,
K. L.
Saenger
,
J.
Bruley
,
W.
Krakow
, and
J. J.
Cuomo
,
J. Appl. Phys.
71
,
5672
(
1992
).
11.
E. A.
Rohlfing
,
J. Chem. Phys.
89
,
6103
(
1988
).
12.
M.
Chhowalla
,
Y.
Yin
,
G. A. J.
Amaratunga
,
D. R.
McKenzie
, and
Th.
Frauenheim
,
Diamond Relat. Mater.
6
,
207
(
1997
).
13.
J.
Kulik
,
Y.
Lifshitz
,
G. D.
Lempert
,
J. W.
Rabalais
, and
D.
Marton
,
J. Appl. Phys.
76
,
5063
(
1994
).
14.
D.
Nir
,
Thin Solid Films
146
,
27
(
1987
).
15.
M.
Weiler
,
S.
Sattel
,
T.
Giessen
, and
K.
Ehrhardt
,
Phys. Rev. B
53
,
1594
(
1996
).
16.
J. P.
Sullivan
,
T. A.
Friedmann
, and
A. G.
Baca
,
J. Electron. Mater.
26
,
102
(
1997
).
17.
P.
Koidl
,
C.
Wild
,
B.
Dischler
,
J.
Wagner
, and
M.
Ramsteiner
,
Mater. Sci. Forum
52–53
,
41
(
1989
).
18.
D. R.
McKenzie
,
D.
Muller
, and
B. A.
Pailthorpe
,
Phys. Rev. Lett.
67
,
773
(
1991
).
19.
A.
Anttila
,
J.
Salo
, and
R.
Lappalainen
,
Mater. Lett.
24
,
153
(
1995
).
20.
M.
Crischke
,
K.
Bewilogua
,
K.
Trojan
, and
H.
Dimigen
,
Surf. Coat. Technol.
74–75
,
739
(
1995
).
21.
M. D.
Bentzon
,
K.
Mogensen
,
J. B.
Hansen
,
C.
Barholm-Hansen
,
C.
Taholt
,
P.
Holiday
, and
S. S.
Eskildsen
,
Surf. Coat. Technol.
68–69
,
651
(
1994
).
22.
J.
Narayan
,
R. D.
Vispute
, and
K.
Jagannadham
,
J. Adhes. Sci. Technol.
9
,
753
(
1995
).
23.
Q.
Wei
,
R. J.
Narayan
,
J.
Narayan
,
J.
Sankar
, and
A. K.
Sharma
,
Mater. Sci. Eng., B
53
,
262
(
1998
).
24.
R. K.
Singh
,
D.
Bhattacharya
, and
J.
Narayan
,
Appl. Phys. Lett.
57
,
2022
(
1990
).
25.
R.
Shuker
and
R. W.
Gammon
,
Phys. Rev. Lett.
25
,
222
(
1970
).
26.
R. A. Street, Hydrogenated Amorphous Silicon (Cambridge University Press, Cambridge, 1991).
27.
V.
Paillard
,
P.
Melinon
,
V.
Dupuis
,
A.
Perez
,
J. P.
Perez
,
G.
Guiraud
,
J.
Fornazero
, and
G.
Panczer
,
Phys. Rev. B
49
,
11433
(
1994
).
28.
D. R.
Tallant
,
T. A.
Friedmann
,
N. A.
Missert
,
M. P.
Siegal
, and
J. P.
Sullivan
,
Mater. Res. Soc. Symp. Proc.
498
,
37
(
1998
).
29.
P. M. Hansen, Constitution of Binary Alloys (Wiley, New York, 1958).
30.
D.
Nir
,
Thin Solid Films
112
,
41
(
1984
).
31.
S. B.
Iyer
,
K. S.
Harshavardhan
, and
V.
Kumar
,
Thin Solid Films
256
,
94
(
1995
).
32.
N.
Matsuda
,
S.
Baba
, and
A.
Kinbara
,
Thin Solid Films
81
,
301
(
1981
).
33.
J. Schultz and M. Nardin, in Handbook of Adhesion Science and Technology, edited by D. E. Packhaw (Wiley, New York 1992), pp. 19–33.
34.
K. W. Allen, 10th Annual Meeting of The Adhesion Soc., Inc., Williamsburg, Virginia, 22–27 February, 1987.
35.
C. Weaver, Proceedings of the 1st International Conference on Vacuum Technology (Pergamon, New York, 1958).
36.
J. F.
Archard
,
J. Appl. Phys.
24
,
981
(
1953
).
37.
E. Rabinowicz, Friction and Wear of Materials, 2nd ed. (Wiley, New York, 1995).
38.
N.
Savvides
and
T.
Bell
,
J. Appl. Phys.
72
,
2791
(
1992
).
39.
S.
Hoshino
,
K.
Fujii
,
N.
Shohata
,
H.
Yamaguchi
,
Y.
Tsukamoto
, and
M.
Yanagisawa
,
J. Appl. Phys.
65
,
1918
(
1989
).
40.
C. A. Brooks, in The Properties of Diamond, edited by J. E. Field (Academic, New York, 1979), p. 383.
41.
A. A.
Voevodin
et al.,
J. Vac. Sci. Technol. A
14
,
1927
(
1996
).
42.
C.
Galiotis
,
Mat. Tech.
8
,
203
(
1993
).
43.
L. S.
Schadler
and
C.
Galiotis
,
Int. Mater. Rev.
40
,
116
(
1995
).
44.
I. M.
Robinson
,
M.
Zakikhani
,
R. J.
Day
,
R. J.
Young
, and
C.
Galiotis
,
J. Mater. Sci. Lett.
6
,
1212
(
1987
).
45.
N.
Melantitis
and
C.
Galiotis
,
J. Mater. Sci.
25
,
5081
(
1990
).
46.
X.
Yang
and
R. J.
Young
,
Composites
25
,
488
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.