A compact retarding field ion energy analyzer has been designed and built to measure the energy distribution of ions bombarding the wafer surfaces placed on radio frequency (rf) biased electrodes in high-density plasma reactors. The analyzer was used to measure the energy distribution of ions impinging on the rf-biased electrostatic chuck in a high-density transformer coupled plasma (TCP) reactor. The effects of TCP power, rf bias, gas composition, and ion mass on the ion energy distributions (IEDs) were demonstrated through Ar, Ne, Ar/Ne, O2 and CF4/O2 discharges. In the operating range studied, the average ion energy increased linearly with increasing rf bias while the ion flux remained constant indicating that independent control of ion flux and energy was achieved in the TCP reactor. Bimodal ion energy distributions resulting from ion energy modulation in the sheath were observed and multiple peaks in the IEDs measured in gas mixtures were identified as ions with different masses falling through the sheath.

1.
M. A. Lieberman, and R. A. Gottscho, Physics of Thin Films, edited by M. Francombe and J. Vossen, (Academic, Orlando, Fl, 1993).
2.
J.
Hopwood
,
Plasma Sources Sci. Technol.
1
,
109
(
1992
).
3.
J. W.
Coburn
,
Thin Solid Films
171
,
65
(
1989
).
4.
W. M.
Holber
and
J.
Forster
,
J. Vac. Sci. Technol. A
8
,
3720
(
1990
).
5.
S. G.
Ingram
and
N. S. J.
Braithwaite
,
J. Phys. D
21
,
1496
(
1988
).
6.
J.
Janes
and
C.
Huth
,
J. Vac. Sci. Technol. A
10
,
3086
(
1992
).
7.
J.
Janes
and
C.
Huth
,
Appl. Phys. Lett.
61
,
261
(
1992
).
8.
K.
Kohler
,
J. W.
Coburn
,
D. E.
Horne
,
E.
Kay
, and
J. H.
Keller
,
J. Appl. Phys.
57
,
59
(
1985
).
9.
J.
Liu
,
G. L.
Huppert
, and
H. H.
Sawin
,
J. Appl. Phys.
68
,
3916
(
1990
).
10.
A.
Metze
,
D. W.
Ernie
, and
H. J.
Oskam
,
J. Appl. Phys.
65
,
993
(
1989
).
11.
J. R.
Woodworth
,
B. P.
Aragon
, and
T. W.
Hamilton
,
Appl. Phys. Lett.
70
,
1947
(
1997
).
12.
J. R.
Woodworth
,
M. E.
Riley
,
P. A.
Miller
,
G. A.
Hebner
, and
T. W.
Hamilton
,
J. Appl. Phys.
81
,
5950
(
1997
).
13.
J. R.
Woodworth
,
M. E.
Riley
,
P. A.
Miller
,
C. A.
Nichols
, and
T. W.
Hamilton
,
J. Vac. Sci. Technol. A
15
,
1
(
1997
).
14.
C.
Bohm
and
J.
Perrin
,
Rev. Sci. Instrum.
64
,
31
(
1993
).
15.
C.
Charles
,
J. Vac. Sci. Technol. A
11
,
157
(
1993
).
16.
J. W.
Coburn
and
E.
Kay
,
J. Appl. Phys.
43
,
4965
(
1972
).
17.
S. G.
Ingram
and
N. S. J.
Braithwaite
,
J. Appl. Phys.
68
,
5519
(
1990
).
18.
C.
Charles
,
R. W.
Boswell
, and
R. K.
Porteous
,
J. Vac. Sci. Technol. A
10
,
398
(
1992
).
19.
J. R.
Woodworth
,
M. E.
Riley
,
D. C.
Meister
,
B. P.
Aragon
,
M. S.
Le
, and
H. H.
Sawin
,
J. Appl. Phys.
80
,
1304
().
20.
E. S.
Aydil
,
B. O. M.
Quiniou
,
J. T. C.
Lee
,
J. A.
Gregus
, and
R. A.
Gottscho
,
Mater. Sci. Semicond. Process.
1
,
75
(
1998
).
21.
N.
Sternberg
, and
V. A.
Godyak
,
Trans. Mag.
30
,
3100
(
1994
).
22.
V. A.
Godyak
and
N.
Sternberg
,
Phys. Rev. A
42
,
2299
(
1990
).
23.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
16
,
638
(
1988
).
24.
M. A.
Lieberman
,
IEEE Trans. Plasma Sci.
17
,
338
(
1989
).
25.
M. J.
Kushner
,
J. Appl. Phys.
58
,
4024
(
1985
).
26.
M. S.
Barnes
,
J. C.
Forster
, and
J. H.
Keller
,
IEEE Trans. Plasma Sci.
19
,
240
(
1991
).
27.
G. A.
Hebner
and
M. J.
Kushner
,
J. Appl. Phys.
62
,
2256
(
1987
).
28.
R. J.
Hoekstra
and
M. J.
Kushner
,
J. Appl. Phys.
79
,
2275
(
1996
).
29.
M. J.
Grapperhaus
and
M. J.
Kushner
,
J. Appl. Phys.
81
,
569
577
(
1997
).
30.
D. Bohm, in Gaseous Electrical Discharges in Magnetic Fields, edited by A. Guthrie and R. K. Wakerling (McGraw-Hill, New York, 1949), pp. 77–86.
31.
P. M.
Vallinga
and
F. J. d.
Hoog
,
J. Phys. D
22
,
925
(
1989
).
32.
P. M.
Vallinga
,
P. M.
Maijer
, and
F. J. d.
Hoog
,
J. Phys. D
22
,
1650
(
1989
).
33.
P.
Beniot-Cattin
and
L. C.
Bernard
,
J. Appl. Phys.
39
,
5723
(
1969
).
34.
Y.
Okamoto
and
H.
Tamagawa
,
J. Phys. Soc. Jpn.
27
,
270
(
1969
).
35.
Y.
Okamoto
and
H.
Tamagawa
,
J. Phys. Soc. Jpn.
29
,
187
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.