An audio-frequency (af) (10–100 kHz) glow discharge has been used for plasma chemical vapor deposition of thin films from organic compounds of the carbon family. It has been realized employing a recently designed reactor, equipped with three electrodes—a small electrode on which films are deposited, and two main electrodes sustaining a glow discharge. The small electrode and one main electrode are connected by a variable capacitance C. It has been found that small changes of C can cause a drastic change in the electronic properties of deposited films. This effect, attributed to a transition between the amorphous insulator (a-I) and amorphous semiconductor (a-S), is discussed for hydrogenated carbon–silicon, carbon–germanium, carbon–tin, and carbon–lead films produced from adequate organometallic compounds. To better understand the deposition process in the reactor, the electrical characteristics of model argon plasma have been investigated by means of a Langmuir single probe movable in the space between the reactor electrodes. Both af potentials of the plasma and typical current–voltage characteristics have been measured. It has been found that energetic conditions of the plasma, and consequently, the plasma chemistry, are independent of C. Changes of C have, however, influence on the ion bombardment process taking place in the vicinity of the small electrode. The ion impact energy Emax has been roughly estimated and a relation Emaxln C is found. The calculated values of Emax, which change from almost zero to several tens of electron volts, are in a good agreement with results of an experiment performed in the reactor with argon sputter etching of a gold film.

1.
Amorphous Silicon Technology–1992, edited by M. J. Thompson, Y. Hamakawa, P. G. LeComber, A. Madan, and E. Schiff (MRS, Pittsburgh, 1992).
2.
Amorphous Semiconductors–Science and Technology, edited by T. Shimizu, F. Yonezawa, S. Nitta, and I. Shimizu (Elsevier, Amsterdam, 1996).
3.
S.
Vepřek
,
F.
Glatz
, and
R.
Konwitschny
,
J. Non-Cryst. Solids
137-138
,
779
(
1991
).
4.
W.
Paul
,
S. J.
Jones
,
W. A.
Turner
, and
P.
Wickboldt
,
J. Non-Cryst. Solids
141
,
271
(
1992
).
5.
W. Paul, in Amorphous Silicon and Related Material, edited by H. Fritzsche (World Scientific, Singapore, 1989), pp. 63–79.
6.
W.
Paul
,
J. H.
Chen
,
E. Z.
Liu
,
A. E.
Wetsel
, and
P.
Wickboldt
,
J. Non-Cryst. Solids
164-166
,
1
(
1993
).
7.
M.
Gazicki
,
K.
Pirker
,
R.
Schallauer
,
W.
Fallmann
,
F.
Olcaytug
,
G.
Urban
,
A.
Jachimowicz
, and
F.
Kohl
,
Thin Solid Films
187
,
51
(
1990
).
8.
J.
Tyczkowski
,
E.
Odrobina
,
M.
Gazicki
, and
F.
Olcaytug
,
J. Non-Cryst. Solids
137-138
,
875
(
1991
).
9.
R. K.
Sadhir
,
H. E.
Saunders
, and
A. W.
Byers
,
Polym. Eng. Sci.
33
,
645
(
1993
).
10.
T. P.
Drüsedau
,
A.
Annen
,
B.
Schröder
, and
H.
Freistedt
,
Philos. Mag. B
69
,
1
(
1994
).
11.
M.
Gazicki
,
H.
Szymanowski
,
J.
Tyczkowski
,
J.
Schalko
, and
F.
Olcaytug
,
J. Vac. Sci. Technol. A
14
,
2835
(
1996
).
12.
J. Tyczkowski, P. Kazimierski, W. Fallmann, and F. Olcaytug, Patent No. PL-169688 B1 (1996).
13.
J.
Tyczkowski
,
B.
Pietrzyk
, and
H.
Szymanowski
,
J. Chem. Vap. Dep.
4
,
261
(
1996
).
14.
J.
Tyczkowski
,
P.
Kazimierski
, and
E.
Odrobina
,
Surf. Coat. Technol.
60
,
609
(
1993
).
15.
J.
Tyczkowski
,
P.
Kazimierski
, and
H.
Szymanowski
,
Thin Solid Films
241
,
291
(
1994
).
16.
H.
Szymanowski
,
M.
Gazicki
,
J.
Tyczkowski
, and
F.
Olcaytug
,
Surf. Coat. Technol.
74-75
,
183
(
1995
).
17.
J.
Tyczkowski
,
B.
Pietrzyk
,
Y.
Hatanaka
, and
Y.
Nakanishi
,
Appl. Surf. Sci.
113-114
,
534
(
1997
).
18.
J.
Tyczkowski
and
P.
Kazimierski
,
J. Phys. D
27
,
179
(
1994
).
19.
J. Tyczkowski and P. Kazimierski, in Proceedings of the 8th International Symposium on “Electrets,” edited by J. Lewiner, D. Morisseau, and C. Alquié (IEEE Service Center, Piscataway, NJ, 1994), pp. 130–135.
20.
J.
Tyczkowski
,
H.
Szymanowski
, and
R.
Mazurczyk
,
Surf. Coat. Technol.
98
,
1365
(
1998
).
21.
J. Tyczkowski and B. Pietrzyk, in Surface Engineering Towards the 21st Century, edited by X. Binshi, M. Shining, L. Jiajun, and Z. Youli (China Machine Press, Shanghai, 1997), pp. 344–347.
22.
J.
Tyczkowski
and
M.
Kryszewski
,
J. Phys. D
17
,
2053
(
1984
).
23.
R. H.
Bruce
,
J. Appl. Phys.
52
,
7064
(
1981
).
24.
M. D.
Gill
,
Vacuum
34
,
357
(
1984
).
25.
R. M.
Clements
,
J. Vac. Sci. Technol.
15
,
193
(
1978
).
26.
E.
Eser
,
R. E.
Ogilvie
, and
K. A.
Taylor
,
J. Vac. Sci. Technol.
15
,
199
(
1978
).
27.
N. Hershkowitz, in Handbook of Thin Film Process Technology, edited by D. A. Glocker and S. I. Shah (IOP, Bristol, 1995), Chap. D.3.0.
28.
H. Szymanowski, Doctoral thesis, Centre of Molecular and Macromolecular Studies, Lodz, 1997.
29.
M. Konuma, Film Deposition by Plasma Techniques (Springer, Berlin, 1992).
30.
A. von Engel, Electric Plasmas: Their Nature and Uses (Taylor and Francis, London, 1983).
31.
D.
Wobschall
,
J. R.
Graham
, Jr.
, and
D. P.
Malone
,
Phys. Rev.
131
,
1565
(
1963
).
32.
W. D.
Davis
and
T. A.
Vanderslice
,
Phys. Rev.
131
,
219
(
1963
).
33.
A. S.
James
and
A.
Matthews
,
Surf. Coat. Technol.
59
,
86
(
1993
).
34.
B. Chapman, Glow Discharge Processes (Wiley, New York, 1980).
35.
R. V.
Stuard
and
G. H.
Wehner
,
J. Appl. Phys.
33
,
2345
(
1962
).
36.
Y.
Catherine
and
P.
Couderc
,
Thin Solid Films
144
,
265
(
1986
).
37.
A. Grill, Cold Plasma in Materials Fabrication (IEEE, New York, 1994).
38.
A.
Bubenzer
,
B.
Dischler
,
G.
Brandt
, and
P.
Koidl
,
J. Appl. Phys.
54
,
4590
(
1983
).
39.
T.-I.
Bao
and
L.
I
,
J. Appl. Phys.
78
,
6852
(
1995
).
40.
P.
Kazimierski
,
J.
Tyczkowski
,
M.
Delamar
, and
H.
Lehmberg
,
J. Non-Cryst. Solids
227-230
,
422
(
1998
).
41.
T.
Ohte
and
M.
Sugawara
,
Mater. Sci. Eng., A
139
,
24
(
1991
).
42.
V. J.
Minkiewicz
and
B. N.
Chapman
,
Appl. Phys. Lett.
34
,
192
(
1979
).
43.
R.
d’Agostino
,
R.
Lamendola
,
P.
Favia
, and
A.
Giquel
,
J. Vac. Sci. Technol. A
12
,
308
(
1994
).
44.
J. S. Logan, in Handbook of Plasma Processing Technology, edited by S. M. Rossnagel, J. J. Cuomo, and W. D. Westwood (Noyes, Park Ridge, NJ, 1990), Chap. 5.
45.
P. Kazimierski and J. Tyczkowski, Surf. Coat. Technol. (submitted).
This content is only available via PDF.
You do not currently have access to this content.