Homoepitaxial layers of InP have been grown on (100) InP substrates by gas source molecular beam epitaxy while simultaneously exposed to an atomic hydrogen flux produced either by plasma or by thermal cracking. The thermal H-assisted growths were performed with various H fluxes, H2 cracker cell temperatures, PH3 cracker cell temperatures, annealing conditions, and Be doping levels. Photoluminescence and Hall effect studies indicate improved optical and electrical properties of the InP layers grown in the presence of H as compared to layers grown by conventional epitaxy without H. This improvement is attributed to a reduction in point defects due to the removal of unwanted phosphine cracker products, such as P4, from the sample surface during growth by reaction with H. The reconstructed 2×1 H-terminated surface may also reduce P vacancy defects due to the absence of the missing phosphorus dimer row present on the conventional 2×4 surface. Problems associated with donor impurity contamination, which increased with thermal source temperature, were avoided by use of the plasma source.

1.
EPI MBE Products Group, 1290 Hammond Road, Saint Paul, MN 55110, U.S.A., Application Note, August/September, 1994 and January 1996.
2.
H.
Shimomura
,
Y.
Okada
, and
M.
Kawabe
,
Jpn. J. Appl. Phys., Part 2
31
,
L628
(
1992
).
3.
H.
Simomura
,
Y.
Okada
,
H.
Matsumoto
,
M.
Kawabe
,
Y.
Kitami
, and
Y.
Bando
,
Jpn. J. Appl. Phys., Part 1
32
,
632
(
1993
).
4.
Y.
Okada
,
H.
Shimomura
, and
M.
Kawabe
,
J. Appl. Phys.
73
,
7376
(
1993
).
5.
Y. J.
Chun
,
Y.
Okada
, and
M.
Kawabe
,
Jpn. J. Appl. Phys., Part 2
32
,
L1085
(
1993
).
6.
A.
Sakai
and
T.
Tatsumi
,
Appl. Phys. Lett.
64
,
52
(
1994
).
7.
Y. J.
Chun
,
Y.
Okada
, and
M.
Kawabe
,
J. Colloid Interface Sci.
150
,
497
(
1995
).
8.
H.
Asahi
,
T.
Hisaka
,
S. G.
Kim
,
T.
Kaneko
,
S. J.
Yu
,
Y.
Okuno
, and
S.
Gonda
,
Appl. Phys. Lett.
61
,
1054
(
1992
).
9.
Y.
Okada
,
T.
Sugaya
,
S.
Ohta
,
T.
Fujita
, and
M.
Kawabe
,
Jpn. J. Appl. Phys., Part 1
34
,
238
(
1995
).
10.
Y.
Okada
,
T.
Fujita
, and
M.
Kawabe
,
Jpn. J. Appl. Phys., Part 2
34
,
L768
(
1995
).
11.
Y.
Okada
,
T.
Fujita
, and
M.
Kawabe
,
Appl. Phys. Lett.
67
,
676
(
1995
).
12.
R. R.
LaPierre
,
B. J.
Robinson
, and
D. A.
Thompson
,
J. Vac. Sci. Technol. B
15
,
1707
(
1997
).
13.
R. R. LaPierre, B. J. Robinson, and D. A. Thompson, J. Cryst. Growth (in press).
14.
Y.
Miyamoto
and
S.
Nonoyama
,
Phys. Rev. B
46
,
6915
(
1992
).
15.
M. B. Panish and H. Temkin, Gas Source Molecular Beam Epitaxy, Springer Series in Materials Science (Springer-Verlag, Berlin, 1993), Vol. 26.
16.
A. S.
Jordan
and
A.
Robertson
,
J. Vac. Sci. Technol. A
12
,
204
(
1994
).
17.
P. G.
Hofstra
,
B. J.
Robinson
,
D. A.
Thompson
, and
S. A.
McMaster
,
J. Vac. Sci. Technol. A
13
,
2146
(
1995
).
18.
D. A. Thompson, D. B. Mitchell, B. J. Robinson, R. R. LaPierre, and P. Mascher, Ion Beam Modification of Materials (Elsevier Science, Amsterdam, 1996), p. 769.
19.
W.
Walukiewicz
,
J.
Lagowski
,
L.
Jastrzebski
,
P.
Rava
,
M.
Lichtensteiger
,
C. H.
Gatos
, and
H. C.
Gatos
,
J. Appl. Phys.
51
,
2659
(
1980
).
20.
D. Mitchell, Ph. D. dissertation, McMaster University, Hamilton, Ontario, Canada, 1995.
21.
G. N.
Maracas
,
K.
Shiralagi
,
R.
Ramamurti
, and
R. W.
Carpenter
,
J. Electron. Mater.
22
,
1375
(
1993
).
22.
P.
Dreszer
,
W. M.
Chen
,
D.
Wasik
,
R.
Leon
,
W.
Walukiewicz
,
B. W.
Liang
,
C. W.
Tu
, and
E. R.
Weber
,
J. Electron. Mater.
22
,
1487
(
1993
).
23.
P.
Dreszer
,
W. M.
Chen
,
K.
Seendripu
,
J. A.
Wolk
,
W.
Walukiewicz
,
B. W.
Liang
,
C. W.
Tu
, and
E. R.
Weber
,
Phys. Rev. B
47
,
4111
(
1993
).
24.
H.
Kunzel
,
J.
Knecht
,
H.
Jung
,
K.
Wunstel
, and
K.
Ploog
,
Appl. Phys. A: Solids Surf.
28
,
167
(
1982
).
25.
J. C.
Garcia
,
A. C.
Beye
,
J. P.
Contour
,
G.
Neu
, and
J.
Massies
,
Appl. Phys. Lett.
52
,
1596
(
1988
).
26.
Landolt-Börnstein Numerical Data and Functional Relationships in Science and Technology, Semiconductors: Physics of Group IV Elements and III-V Compounds, edited by O. Madelung (Springer-Verlag, Berlin, 1982), Vol. 17.
27.
J. I. Pankove and N. M. Johnson, Hydrogen in Semiconductors (Academic, Boston, 1991), Vol. 34.
28.
S. J. Pearton, J. W. Corbett, and M. Stavola, Hydrogen in Crystalline Semiconductors, Springer Series in Materials Science 16 (Springer-Verlag, Berlin, 1992).
29.
S. J. Pearton, Hydrogen in Compound Semiconductors, Materials Science Forum 148,149 (Trans. Tech. Publications, Switzerland, 1994).
30.
H. H.
Farrell
,
J. P.
Harbison
, and
L. D.
Peterson
,
J. Vac. Sci. Technol. B
5
,
1482
(
1987
).
31.
J. P.
Harbison
and
H. H.
Farrell
,
J. Vac. Sci. Technol. B
6
,
733
(
1988
).
32.
H. H.
Farrell
,
R. E.
Nahory
, and
J. P.
Harbison
,
J. Vac. Sci. Technol. B
6
,
779
(
1988
).
33.
S.
Balasubramanian
,
N.
Balasubramanian
, and
V.
Kumar
,
Semicond. Sci. Technol.
10
,
310
(
1995
).
34.
M. A.
Di Forte-Poisson
,
C.
Brylinski
, and
J. P.
Duchemin
,
Appl. Phys. Lett.
46
,
476
(
1985
).
35.
Properties of Indium Phosphide, EMIS Datareviews Series No. 6 (INSPEC, London and New York, 1991), p. 170.
36.
B.
Wakefield
,
L.
Eaves
,
K. A.
Prior
,
A. W.
Nelson
, and
G. J.
Davies
,
J. Phys. D
17
,
L133
(
1984
).
37.
A. A.
Iliads
and
S.
Ovadia
,
J. Appl. Phys.
63
,
5460
(
1988
).
38.
T. S.
Cheng
,
V. M.
Airaksinen
, and
C. R.
Stanley
,
J. Appl. Phys.
64
,
6662
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.