High-density-plasma deposition of SiO2 is an important process in integrated circuit manufacturing. A list of gas-phase and surface reactions has been compiled for modeling plasma-enhanced chemical vapor deposition of SiO2 from SiH4,O2, and Ar gas mixtures in high-density-plasma reactors. The gas-phase reactions include electron impact, neutral–neutral, ion–ion, and ion–neutral reactions. The surface reactions and deposition mechanism is based on insights gained from attenuated total reflection Fourier transform infrared spectroscopy experiments and includes radical adsorption onto the SiO2 surface, ion-enhanced desorption from the surface layer, radical abstractions, as well as direct ion-energy-dependent sputtering of the oxide film. A well-mixed reactor model that consists of mass and energy conservation equations averaged across the reactor volume was used to model three different kinds of high-density plasma deposition chambers. Experimental measurements of total ion densities, relative radical densities, and net deposition rate, as functions of plasma operating conditions, have been compared to model predictions. The results show good quantitative agreement between model predictions and experimental measurements. The compiled reaction set and surface reaction network description was thus validated and can be employed in more sophisticated two- or three-dimensional plasma simulations.

1.
B.
Fowler
and
E.
O’Brien
,
J. Vac. Sci. Technol. B
12
,
441
(
1994
).
2.
P.
Shufflebotham
,
M.
Weise
,
D.
Pirkle
, and
D.
Denison
,
Mater. Sci. Forum
140–142
,
255
(
1993
).
3.
J.
Li
,
J. P.
McVittie
,
J.
Ferziger
,
K. C.
Saraswat
, and
J.
Dong
,
J. Vac. Sci. Technol. B
13
,
1867
(
1995
).
4.
J. Li, Ph.D. thesis, Stanford University, 1996 (unpublished).
5.
J. C.
Rey
,
L. Y.
Chen
,
J. P.
McVittie
, and
K. C.
Saraswat
,
J. Vac. Sci. Technol. A
9
,
1083
(
1991
).
6.
M. M.
Islamraja
,
M. A.
Cappelli
,
J. P.
McVittie
, and
K. C.
Saraswat
,
J. Appl. Phys.
70
,
7137
(
1991
).
7.
M.
Virmani
,
D. A.
Levedakis
,
G. B.
Raupp
, and
T. S.
Cale
,
J. Vac. Sci. Technol. A
14
,
977
(
1996
).
8.
M. Meyyappan, Computational Modeling in Semiconductor Processing, edited by M. Meyyappan (Artech House, Boston, 1995), Chap. 5, p. 231.
9.
M. J.
Kushner
,
J. Appl. Phys.
62
,
2803
(
1987
).
10.
M. J.
Kushner
,
J. Appl. Phys.
63
,
2532
(
1988
).
11.
M. J.
Kushner
,
J. Appl. Phys.
74
,
6538
(
1993
).
12.
M.
Liehr
and
S. A.
Cohen
,
Appl. Phys. Lett.
60
,
198
(
1992
).
13.
R.
Iyer
,
D. L.
Lile
, and
C. M.
McConica
,
J. Electrochem. Soc.
140
,
1430
(
1993
).
14.
E.
Meeks
and
J. W.
Shon
,
IEEE Trans. Plasma Sci.
23
,
539
(
1995
).
15.
E. Meeks, H. K. Moffat, J. F. Grcar, and R. J. Kee, Sandia National Laboratories, Report No. SAND96-8218, 1996 (unpublished).
16.
M.
Meyyappan
and
T. R.
Govindan
,
IEEE Trans. Plasma Sci.
23
,
623
(
1995
).
17.
M.
Meyyappan
and
T. R.
Govindan
,
Vacuum
47
,
215
(
1996
).
18.
C.
Lee
,
D. B.
Graves
,
M. A.
Lieberman
, and
D. W.
Hess
,
J. Electrochem. Soc.
141
,
1546
(
1994
).
19.
R. J. Kee, F. M. Rupley, and J. A. Miller, Sandia National Laboratories, Report No. SAND87-8215B, 1990 (unpublished).
20.
R. J. Kee, F. M. Rupley, E. Meeks, and J. A. Miller, Sandia National Laboratories, Report No. SAND87-8216, 1996 (unpublished).
21.
M. E. Coltrin, R. J. Kee, F. M. Rupley, and E. Meeks, Sandia National Laboratories, Report No. SAND96-8217, 1996 (unpublished).
22.
V.
Puech
and
L.
Torchin
,
J. Phys. D
19
,
2309
(
1986
).
23.
L. R.
Peterson
,
J. Chem. Phys.
54
,
6068
(
1972
).
24.
D.
Margreiter
,
H.
Deutsch
, and
T. D.
Mark
,
Contrib. Plasma Phys.
4
,
487
(
1990
).
25.
Y.
Itikawa
,
K.
Ichimura
,
K.
Onda
,
K.
Sakimoto
,
K.
Takayanago
,
Y.
Hatano
,
M.
Hayashi
,
H.
Nishimura
, and
S.
Tsurubuchi
,
J. Phys. Chem. Ref. Data
18
,
23
(
1989
).
26.
P.
Cosby
,
J. Chem. Phys.
98
,
9560
(
1993
).
27.
Y.
Itikawa
and
A.
Ichimura
,
J. Phys. Chem. Ref. Data
19
,
637
(
1990
).
28.
W. R.
Thompson
,
M. B.
Shah
, and
H. B.
Gilbody
,
J. Phys. B
28
,
1321
(
1995
).
29.
B.
Peart
,
R. A.
Forrest
, and
K.
Dolder
,
J. Phys. B
12
,
2735
(
1979
).
30.
C. Lee, Ph.D. thesis, University of California Berkeley, 1995 (unpublished).
31.
R. E.
Olson
,
J. R.
Peterson
, and
J.
Moseley
,
J. Chem. Phys.
53
,
3391
(
1970
).
32.
J. I.
Steinfeld
,
S. M.
Adler-Golden
, and
J. W.
Gallagher
,
J. Phys. Chem. Ref. Data
16
,
911
(
1987
).
33.
V. G.
Anicich
,
J. Phys. Chem. Ref. Data
22
,
1469
(
1993
).
34.
R.
Atkinson
,
D. L.
Baulch
,
R. A.
Cox
,
R. F.
Hampson
,
J. A.
Kerr
, and
J.
Troe
,
J. Phys. Chem. Ref. Data
21
,
1125
(
1992
).
35.
M.
Vialle
,
M.
Touzeau
,
G.
Gousset
, and
C. M.
Ferreira
,
J. Phys. D
24
,
301
(
1991
).
36.
M.
Kurachi
and
Y.
Nakamura
,
IEEE Trans. Plasma Sci.
19
,
262
(
1991
).
37.
R.
Nagpal
and
A.
Garscadden
,
J. Appl. Phys.
75
,
703
(
1994
).
38.
E.
Krishnakumar
and
S. K.
Srivastava
,
Contrib. Plasma Phys.
35
,
395
(
1995
).
39.
R. K. Janev, W. D. Langer, K. Evans, and D. E. Post, Elementary Processes in Hydrogen Helium Plasmas (Springer-Verlag, New York, 1987).
40.
V.
Tarnovsky
,
H.
Deutsch
, and
K.
Becker
,
J. Chem. Phys.
105
,
6315
(
1996
).
41.
J. A.
Miller
and
C. F.
Melius
,
Combust. Flame
91
,
21
(
1992
).
42.
J. A. Britten, J. Tong, and C. K. Westbrook, Presented at the 23rd International Symposium on Combustion (The Combustion Institute, Pittsburg, Pennsylvania, 1990).
43.
L.
Ding
and
P.
Marshall
,
J. Chem. Phys.
98
,
8545
(
1993
).
44.
H. J.
Mick
,
M. W.
Markus
,
P.
Roth
, and
V. N.
Smirnov
,
Ber. Bunsenges. Phys. Chem.
99
,
880
(
1995
).
45.
D.
Hussain
and
P. E.
Norris
,
J. Chem. Soc. Faraday Trans. 2
74
,
93
(
1978
).
46.
T. L.
Pollock
,
J. Am. Ceram. Soc.
95
,
1017
(
1973
).
47.
Y.
Matsui
,
A.
Yuuki
,
N.
Morita
, and
K.
Tachibana
,
Jpn. J. Appl. Phys., Part 1
26
,
1575
(
1987
).
48.
V. N. Volintsev, I. S. Zaslonko, V. S. Mikheev, and V. N. Smirnov, Kinetics and Catalysis 27, 843 (1987).
49.
R.
Atkinson
and
J. N.
Pitts
,
Int. J. Chem. Kinet.
10
,
1151
(
1978
).
50.
M. E.
Coltrin
,
R. J.
Kee
, and
G. H.
Evans
,
J. Electrochem. Soc.
136
,
819
(
1989
).
51.
M. D.
Allendorf
and
R. J.
Kee
,
J. Electrochem. Soc.
138
,
841
(
1991
).
52.
J. A. Kerr and S. J. Moss, CRC Handbook of Bimolecular and Termolecular Gas Reactions (CRC, Boca Raton, Florida, 1981).
53.
F. Westley, J. T. Herron, and R. J. Cvetanovic, U.S. Government Printing Office, Report No. NSRDS-NBS 73, Parts 1 and 2, 1987.
54.
H. J. Mick, P. Roth, V. N. Smirnov, and I. S. Zaslonko, Kinetics and Catalysis 35, 439 (1994).
55.
P.
Ho
,
M. E.
Coltrin
, and
W. G.
Breiland
,
J. Phys. Chem.
98
,
10
138
(
1994
).
56.
K.
Tokuhashi
,
S.
Horiguchi
,
Y.
Urano
,
M.
Iwasaka
,
H.
Ohtani
, and
S.
Kondo
,
Combust. Flame
82
,
40
(
1990
).
57.
M.
Koshi
,
A.
Miyoshi
, and
H.
Matsui
,
J. Phys. Chem.
95
,
9869
(
1991
).
58.
M.
Nemoto
,
A.
Suzuki
,
H.
Nakamura
,
K.
Shibuya
, and
K.
Obi
,
Chem. Phys. Lett.
162
,
467
(
1989
).
59.
B. L.
Kickel
,
J. B.
Griffin
, and
P. B.
Armentrout
,
Z. Phys. D
24
,
101
(
1992
).
60.
A. V.
Phelps
,
J. Phys. Chem. Ref. Data
21
,
883
(
1992
).
61.
J.
Perrin
,
O.
Leroy
, and
M. C.
Bordage
,
Contrib. Plasma Phys.
36
,
3
(
1996
).
62.
G. G. A.
Perkins
,
E. R.
Austin
, and
F. W.
Lampe
,
J. Am. Ceram. Soc.
101
,
1109
(
1979
).
63.
A.
Gallagher
,
J. Appl. Phys.
71
,
4771
(
1992
).
64.
J. R.
Doyle
,
D. A.
Doughty
, and
A.
Gallagher
,
J. Appl. Phys.
71
,
4771
(
1992
).
65.
J.
Perrin
,
J. P. M.
Schmitt
,
G. D.
Rosny
,
B.
Drevillon
,
J.
Huc
, and
A.
Lloret
,
Chem. Phys.
73
,
383
(
1982
).
66.
S. K.
Srivastava
,
E.
Krishnakumar
, and
A. C.
de Souza
,
Int. J. Mass Spectrom. Ion Processes
107
,
83
(
1991
).
67.
A.
Goumri
,
W. J.
Yuan
,
L.
Ding
,
Y.
Shi
, and
P.
Marshall
,
Chem. Phys.
177
,
233
(
1993
).
68.
R. G.
Gilbert
,
K.
Luther
, and
J.
Troe
,
Ber. Bunsenges. Phys. Chem.
87
,
169
(
1983
).
69.
M. D.
Allendorf
,
C. F.
Melius
,
P.
Ho
, and
M. R.
Zachariah
,
J. Phys. Chem.
99
,
15
285
(
1995
).
70.
M. W.
Chase
,
C. A.
Davies
,
J. R.
Downey
,
D. J.
Frurip
,
R. A.
McDonald
, and
A. N.
Syverud
,
J. Phys. Chem. Ref. Data
14
, Suppl. No. 1,
1
(
1985
).
71.
S. E. Stein, NIST Standard Reference Database 25: Structures and Properties National Institute of Standards and Technology (U.S. Department of Commerce, 1994).
72.
D. Bohm, The Characteristics of Electrical Discharges in Magnetic Fields, edited by R. K. Wakerling and A. Guthrie (McGraw-Hill, New York, 77), Chap. 3.
73.
S. M.
Han
and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
14
,
2062
(
1996
).
74.
S. M.
Han
and
E. S.
Aydil
,
Thin Solid Films
291
,
427
(
1996
).
75.
M. A. Lieberman and A. J. Lichtenberg, Principles of Plasma Discharges and Materials Processing (Wiley, New York, 1994).
76.
S.
Scaglione
,
L.
Carneve
, and
F.
Sarto
,
J. Vac. Sci. Technol. A
12
,
1523
(
1994
).
77.
V. I. Babushkin, G. M. Matveyev, and Mchedlou-Petrossyan, Thermodynamics of Silicates (Springer-Verlag, New York, 1985).
78.
H. K. Moffat (personal communication).
79.
S. W. Benson, Thermochemical Kinetics (Wiley, New York, 1976).
80.
R. Walsh, The Chemistry of Organic Silicon Compounds, edited by S. Patai and Z. Rappoport (Wiley, London, 1989), p. 371.
81.
S. C.
Deshmukh
and
E. S.
Aydil
,
J. Vac. Sci. Technol. A
13
,
2355
(
1995
).
82.
J. D. Swift and M. J. R. Schwar, Electric Probes for Plasma Diagnostics (Elsevier, New York, 1969).
83.
K. H.
Chew
,
J.
Chen
,
R. C.
Woods
, and
J. L.
Shohet
,
J. Vac. Sci. Technol. A
13
,
2483
(
1995
).
84.
D. Denison, Presented at the 187th National Meeting of the Electrochemical Society, 13th International Conference on Chemical Vapor Deposition, Reno, Nevada, 1995 (unpublished).
85.
A. G. McLain, C. J. Jachimowski, and R. C. Rogers, NASA Report, Technical Paper 2415, 1985.
86.
M. E. Coltrin (personal communication).
This content is only available via PDF.
You do not currently have access to this content.