To establish the self-limiting reaction process that is necessary to achieve the atomic layer-by-layer etching for the damageless fabrication of nanometer-electronics devices, the initial reaction of fluorine (F) atoms and F2 molecules with hydrogen (H)-terminated Si(111) was studied employing a combined system of Fourier transform infrared (FTIR)-attenuated total reflection (ATR) and x-ray photoelectron spectroscopy (XPS). In the ATR measurement, peaks of 2086 cm−1(B2) and 2090 cm−1(B3) newly appeared instead of a decrease in the original Si–H peak at 2083 cm−1(B1) with initial exposure of XeF2. The sum area of B1, B2, and B3 peaks until ∼2000 L was almost constant. This implies that B2 and B3 peaks also resulted from Si–H bonds. The XPS measurement revealed that the initial exposure of XeF2 generated nonbonded F atoms at first, followed by SiF1 bonds. Based on the good correspondence between ATR and XPS results, first the F atoms penetrate just underneath the Si–H bond, generating the B2 peak. After further exposure the B3 peak appears arising from the bonding of an F atom with a Si–H bond at the five-coordination state. However, further exposure of F atoms caused higher order SiFx(x=1,2,3) products. Hence, an F2 gas that was less reactive than F atoms was investigated. It was found that the exposure of H-terminated Si(111) to 5% F2/He reached a plateau value at 5×105L, where terminated H atoms completely disappeared. The SiF monolayer corresponded exactly to the formation of an atomic layer of Si(111). This indicates that the self-limiting process for the Si/F system is realized first.

1.
H. F.
Winters
and
J. W.
Coburn
,
Surf. Sci. Rep.
14
,
161
(
1992
).
2.
J. W.
Coburn
and
H. F.
Winters
,
J. Appl. Phys.
50
,
3189
(
1979
).
3.
D. L.
Flamm
,
V. M.
Donnelly
, and
J. A.
Mucha
,
J. Appl. Phys.
52
,
3633
(
1981
).
4.
R. A.
Haring
,
F. W.
Saris
, and
A. E.
de Vries
,
Appl. Phys. Lett.
41
,
174
(
1982
).
5.
F. R.
McFeely
,
J. F.
Morar
, and
F. J.
Himpsel
,
Surf. Sci.
165
,
277
(
1986
).
6.
K.
Ninomiya
,
K.
Suzuki
,
S.
Nishimatsu
, and
O.
Okada
,
J. Appl. Phys.
62
,
1459
(
1987
).
7.
D. C.
Gray
,
H. H.
Sawin
, and
J. W.
Butterbaugh
,
J. Vac. Sci. Technol. A
9
,
779
(
1991
).
8.
H. F.
Winters
and
I. C.
Plumb
,
J. Vac. Sci. Technol. B
9
,
197
(
1991
).
9.
C. W.
Lo
,
D. K.
Shuh
,
V.
Chakarian
,
T. D.
Durbin
,
P. R.
Varekamp
,
J. A.
Yarmoff
,
Phys. Rev. B
47
,
15648
(
1993
).
10.
M.
Seel
and
P. S.
Bagus
,
Phys. Rev. B
28
,
2023
(
1983
).
11.
T. A.
Schoolcraft
and
B. J.
Garrison
,
J. Vac. Sci. Technol. A
8
,
3496
(
1990
).
12.
C. J.
Wu
and
E. A.
Carter
,
Phys. Rev. B
45
,
9065
(
1992
).
13.
P. C.
Weakliem
,
C. J.
Wu
, and
E. A.
Carter
,
Phys. Rev. Lett.
69
,
200
(
1992
).
14.
H.
Feil
,
J.
Dieleman
, and
B. J.
Garrison
,
J. Appl. Phys.
74
,
1303
(
1993
).
15.
H.
Sakaue
,
S.
Iseda
,
K.
Asami
,
J.
Yamamoto
,
M.
Hirose
, and
Y.
Horiike
,
Jpn. J. Appl. Phys., Part 1
29
,
2648
(
1990
).
16.
T.
Takahagi
,
I.
Nagai
,
A.
Ishitani
,
H.
Kuroda
, and
Y.
Nagasawa
,
J. Appl. Phys.
64
,
3516
(
1988
).
17.
G. S.
Higashi
,
Y. J.
Chaval
,
G. W.
Trucks
, and
K.
Raghavachari
,
Appl. Phys. Lett.
56
,
656
(
1990
).
18.
J. H.
Scofield
,
J. Electron Spectrosc.
8
,
129
(
1976
).
19.
S.
Tanuma
,
C. J.
Powell
, and
D. R.
Penn
,
Surf. Interface Anal.
17
,
911
(
1991
).
20.
D. Briggs and M. P. Seah, Practical Surface Analysis, 2nd Ed. (Wiley, New York, 1994), Vol. 1, p. 227.
21.
S.
Watanabe
and
M.
Shigeno
,
Jpn. J. Appl. Phys., Part 1
31
,
1702
(
1992
).
22.
T.
Suzuki
,
M.
Muto
,
M.
Hara
,
K.
Yamabe
, and
T.
Hattori
,
Jpn. J. Appl. Phys.
25
,
544
(
1986
).
23.
A.
Tachibana
,
Y.
Kurosaki
,
T.
Sera
,
E.
Tanaka
,
H.
Fueno
, and
T.
Yamabe
,
J. Phys. Chem.
94
,
5234
(
1990
).
24.
P. J.
van den Hoek
,
W.
Ravenek
, and
E. J.
Baerends
,
Phys. Rev. B
38
,
12
508
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.