Electron induced gas desorption yields from stainless steel, copper, and aluminum surfaces have been measured for electrons of 300 eV energy. The main gases desorbed were H2,CH4,H2O, CO, and CO2. The effect of increasing the temperature on the gas desorption yields was measured and the only yields affected were those of H2O and H2, while the others remained essentially constant. The dependence on the dose and the temperature using two identical samples was also measured and the yields were found to be proportional to the dose to the power— α, with α positive. No big differences with temperature were seen. The value of the exponent for H2 is bigger than that expected for a diffusion model. The dependence with coverage and temperature was also analyzed, showing that the cleaning effect is quicker at higher temperatures, especially for H2. A diffusion model for H2 was applied to interpret the experimental results, showing that the model explains the results, if we consider that the H2 concentration across the bulk of the material, decreases exponentially.

1.
O.
Gröbner
,
A. G.
Mathewson
,
H.
Störi
,
P.
Strubin
, and
R.
Souchet
,
Vacuum
33
,
397
(
1983
).
2.
M.
Bernardini
and
L.
Malter
,
J. Vac. Sci. Technol.
2
,
130
(
1965
).
3.
G. E.
Fischer
and
R. A.
Mack
,
J. Vac. Sci. Technol.
2
,
123
(
1965
).
4.
M. H.
Achard
,
R. S.
Calder
, and
A. G.
Mathewson
,
Vacuum
29
,
53
(
1979
).
5.
The Large Hadron Collider Conceptual Design, The LHC Study Group, CERN/AC/95-05 (LHC), 20 October 1995.
6.
V. V.
Anashin
,
O. B.
Malyshev
,
V. N.
Osipov
,
I. L.
Maslennikov
, and
W. C.
Turner
,
J. Vac. Sci. Technol. A
12
,
2917
(
1993
).
7.
O.
Gröbner
,
A. G.
Mathewson
, and
P. C.
Marin
,
J. Vac. Sci. Technol. A
12
,
846
(
1994
).
8.
M. D.
Malev
,
Vacuum
23
,
43
(
1972
).
9.
M.
Andritschky
,
O.
Gröbner
,
A. G.
Mathewson
,
F.
Schumann
,
P.
Strubin
, and
R.
Souchet
,
Vacuum
38
,
933
(
1988
).
10.
G. Dugan, Superconducting Super Collider Laboratory Report SSCL-610, January 1993.
11.
J. Gómez Goñi, Vacuum Technical Note 91-11, CERN, October 1991.
12.
M. O.
Krause
,
J. Phys. Chem. Ref. Data
8
,
307
(
1979
).
13.
B. Angerth, F. Bertinelli, J.-C. Brunet, R. Calder, J. Gómez-Goñi, O. Gröbner, A. G. Mathewson, A. Poncet, C. Reymermier, and E. Wallén, in Proceedings of the 4th European Particle Conference, EPAC94, London, 26th June–1st July 1994, edited by V. Suller and C. Petit-Jean-Genaz (World Science, Singapore, 1994), pp. 2467–2469.
14.
P. A. Redhead, J. P. Hobson, and E. V. Kornelsen, The Physical Basis of Ultrahigh Vacuum, AVS Classics (American Institute of Physics, New York, 1993).
15.
H. F.
Dylla
,
D. M.
Manos
, and
P. H.
LaMarche
,
J. Vac. Sci. Technol. A
11
,
2623
(
1993
).
16.
M. L.
Knotek
,
Rep. Prog. Phys.
47
,
1499
(
1984
).
17.
M.
Ruckman
,
M.
Strongin
,
W.
Landford
, and
W. C.
Turner
,
J. Vac. Sci. Technol. A
13
,
1994
(
1995
).
18.
J. D.
Fowler
,
D.
Chandra
,
T. S.
Elleman
,
A. W.
Payne
, and
K.
Verghese
,
J. Am. Ceram. Soc.
60
,
155
(
1977
).
19.
J. Gómez-Goñi, Doctoral thesis, Universidad Complutense de Madrid, Madrid, 1994.
20.
P. Chiggiato (private communication).
21.
T.
Ohi
and
O.
Konno
,
J. Vac. Sci. Technol. A
12
,
3186
(
1994
).
22.
M. P.
Seah
,
Surf. Interface Anal.
9
,
85
(
1986
).
23.
M. Bernardini, Trans. 3rd Int. Vac. Cong. 2, 481 (1965).
24.
S. Garbe, Vakuum Technik 12, 201 (1963).
This content is only available via PDF.
You do not currently have access to this content.