Mass and energy measurements of ions and neutrals impinging on a substrate surface were performed during radio frequency (rf) bias sputter deposition of cubic boron nitride (cBN) thin films in a pure Ar discharge. The sampling system was rf driven to measure the correct energy of ions impinging to the rf driven substrate. The ion energy distributions showed asymmetric bimodal shapes and the energy spreads varied with the masses of ions and the negative substrate bias voltage (Vs).Ar+ was the most dominant ion, and the average energy and energy spread changed with Vs from 90 to 310 eV and from 40 to 140 eV, respectively. The flux ratio of Ar+ to B iB) increased from 1.0 to 2.3 with a decrease in the target power input. cBN could be deposited above a threshold of the total momentum transfer per depositing boron atoms; 138 (eV amu)1/2, which is comparable to the values reported in the ion beam assisted depositions. Therefore, argon ions with an energy of 135 to 380 eV are considered to be equally contributory for cBN formation. Moreover, nucleation of cBN depends on ΦiB, namely, the flux ratio of ion to boron, and requires accumulation of a certain surface state caused by ion bombardment effects, such as defects generation or densification.

1.
D. J.
Kester
and
R.
Messer
,
J. Appl. Phys.
72
,
504
(
1992
).
2.
P. B.
Mirkarimi
,
K. F.
McCarty
,
D. L.
Medlin
,
W. G.
Wolfer
,
T. A.
Friedmann
,
E. J.
Klaus
,
G. F.
Cardinale
, and
D. G.
Howitt
,
J. Mater. Res.
9
,
2925
(
1994
).
3.
T.
Yoshida
,
Diamond Relat. Mater.
5
,
501
(
1996
).
4.
S.
Reinke
,
M.
Kuhr
,
W.
Kulish
, and
R.
Kassing
,
Diamond Relat. Mater.
4
,
272
(
1995
).
5.
M. P.
Johansson
,
I.
Ivanov
,
L.
Hultman
,
E. P.
Muller
, and
A.
Schutze
,
J. Vac. Sci. Technol. A
14
,
3100
(
1996
).
6.
R. T.
Tsui
,
Phys. Rev.
168
,
107
(
1968
).
7.
Y.
Okamoto
and
H.
Tamagawa
,
J. Phys. Soc. Jpn.
29
,
187
(
1970
).
8.
M. J.
Kushner
,
J. Appl. Phys.
58
,
4024
(
1985
).
9.
B. E.
Thompson
,
H. H.
Sawin
, and
D.
Fisher
,
J. Appl. Phys.
63
,
2241
(
1988
).
10.
A.
Manenschijin
and
W. J.
Goedheer
,
J. Appl. Phys.
69
,
2923
(
1991
).
11.
D.
Field
,
D. F.
Klemperer
,
P. W.
May
, and
Y. P.
Song
,
J. Appl. Phys.
70
,
82
(
1991
).
12.
S.
Ulrich
,
J.
Scherer
,
J.
Schwan
,
I.
Barzen
,
K.
Jung
, and
H.
Ehrhardt
,
Diamond Relat. Mater.
4
,
288
(
1995
).
13.
S.
Ulrich
,
J.
Schwan
,
W.
Donner
, and
H. E.
Ehrhardt
,
Diamond Relat. Mater.
5
,
548
(
1996
).
14.
O. Tsuda, J. Fujikata, Y. Yamada, and T. Yoshida, Advances in New Diamond Science and Technology (MYU, Tokyo, 1994), p. 595.
15.
O. Tsuda, Y. Tatebayashi, Y. Yamada, and T. Yoshida (unpublished).
16.
O.
Tsuda
,
Y.
Yamada
,
T.
Fujii
, and
T.
Yoshida
,
J. Vac. Sci. Technol. A
13
,
2843
(
1993
).
17.
B.
Window
and
G. L.
Harding
,
J. Vac. Sci. Technol. A
8
,
1277
(
1990
).
18.
B.
Window
and
G. L.
Harding
,
J. Vac. Sci. Technol. A
10
,
3300
(
1992
).
19.
Y.
Yamada
,
Y.
Tatebayashi
,
O.
Tsuda
, and
T.
Yoshida
,
Thin Solid Films
295
,
137
(
1997
).
20.
D. R.
McKenzie
,
W. D.
McFall
,
H.
Smith
,
B.
Higgins
,
R. W.
Boswell
,
A.
Durandet
,
B. W.
Jones
, and
I. S.
Falconet
,
Nucl. Instrum. Methods Phys. Res. B
106
,
90
(
1995
).
21.
S.
Amagi
,
D.
Takahashi
, and
T.
Yoshida
,
Appl. Phys. Lett.
70
,
946
(
1997
).
22.
O. Tsuda, Y. Tatebayashi, Y. Yamada, and T. Yoshida (unpublished data).
This content is only available via PDF.
You do not currently have access to this content.