Supersonic jets of have been employed to grow single crystalline silicon thin films on Si(100) and polysilicon surfaces at substrate temperatures of 500–650 °C. Films deposited on Si(100) employing high and low kinetic energy jets are epitaxial as determined by reflection high energy electron diffraction. The uniformity and growth of films deposited on polysilicon by high energy ∼2 eV (1% in hydrogen) and low energy ∼0.09 eV (pure jets are compared to silicon growth employing ultrahigh vacuum chemical vapor deposition (UHV-CVD). To ascertain the influence of high kinetic energy on the growth of silicon from disilane, the reaction probability is estimated from growth measurements for all techniques and compared. The high energy jet is found to have a substantially higher reaction probability compared to the low energy jet and UHV-CVD indicating that the growth is enhanced by the high energy disilane. The disilane flux distribution employing the high energy jet is sharply peaked along the centerline causing a peaked growth profile across the 4 in. wafer. The silicon growth profile obtained from the high energy jet broadens slightly as the substrate temperature decreases. The higher flux at the centerline results in a higher hydrogen coverage compared to the wafer edge which affects the reaction probability in the two locations relative to one another. As the substrate temperature decreases, the growth profile flattens since the lower hydrogen desorption rate, and resulting higher hydrogen coverage, reduces the disilane adsorption probability at the centerline more than at the wafer edge. The growth distribution from the high energy jet is found to become slightly less peaked when the carrier gas is changed from hydrogen to helium.
Skip Nav Destination
Article navigation
July 1997
Research Article|
July 01 1997
Growth and characterization of silicon thin films employing supersonic jets
K. A. Pacheco;
K. A. Pacheco
Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1062
Search for other works by this author on:
B. A. Ferguson;
B. A. Ferguson
Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1062
Search for other works by this author on:
C. B. Mullins
C. B. Mullins
Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712-1062
Search for other works by this author on:
J. Vac. Sci. Technol. A 15, 2190–2195 (1997)
Article history
Received:
June 19 1996
Accepted:
March 07 1997
Citation
K. A. Pacheco, B. A. Ferguson, C. B. Mullins; Growth and characterization of silicon thin films employing supersonic jets. J. Vac. Sci. Technol. A 1 July 1997; 15 (4): 2190–2195. https://doi.org/10.1116/1.580532
Download citation file:
Sign in
Don't already have an account? Register
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Could not validate captcha. Please try again.
Sign in via your Institution
Sign in via your InstitutionPay-Per-View Access
$40.00
Citing articles via
Related Content
Adsorption and thermal dissociation of disilane (Si2H6) on Si(100)2×1
Journal of Vacuum Science & Technology A (January 1990)
Origin of hydrogen in amorphous silicon produced by glow discharge in Si2H6+D2 and Si2D6+H2
Appl. Phys. Lett. (September 1984)
Disilane: A new silicon doping source in metalorganic chemical vapor deposition of GaAs
Appl. Phys. Lett. (May 1984)
Optical emission spectroscopy of ArF‐laser‐irradiated disilane‐acetylene mixtures for 3C‐SiC epitaxial growth
Journal of Applied Physics (February 1993)
Deposition and photoconductivity of hydrogenated amorphous silicon films by the pyrolysis of disilane
Journal of Applied Physics (February 1986)