Low impedance at the interface between tissue and conducting electrodes is of utmost importance for the electrical recording or stimulation of heart and brain tissue. A common way to improve the cell–metal interface and thus the signal-to-noise ratio of recordings, as well as the charge transfer for stimulation applications, is to increase the electrochemically active electrode surface area. In this paper, we propose a method to decrease the impedance of microelectrodes by the introduction of carbon nanotubes (CNTs), offering an extremely rough surface. In a multistage process, an array of multiple microelectrodes covered with high quality, tightly bound CNTs was realized. It is shown by impedance spectroscopy and cardiac myocyte recordings that the transducer properties of the carbon nanotube electrodes are superior to conventional gold and titanium nitride electrodes. These findings will be favorable for any kind of implantable heart electrodes and electrophysiology in cardiac myocyte cultures.

1.
E
Ben-Jacob
and
Y
Hanein
,
J Mater Chem
18
,
5181
(
2008
).
2.
D
Brüggemann
,
B
Wolfrum
,
V
Maybeck
,
Y
Mourzina
,
M
Jansen
and
A
Offenhäusser
,
Nanotechnology
22
,
265104
(
2011
).
3.
G
Cellot
,
E
Cilia
,
S
Cipollone
,
V
Rancic
,
A
Sucapane
,
S
Giordani
,
L
Gambazzi
,
H
Markram
,
M
Grandolfo
,
DFG
Scaini
,
L
Casalis
,
M
Prato
,
M
Giugliano
and
L
Ballerini
,
Nat Nanotechnol
4
,
126
(
2008
).
4.
J
Choi
,
H
Jung
and
T
Kim
,
IEEE Trans Biomed Eng
53
,
738
(
2006
).
6.
Daus A, Thielemann C (2010) Eur J Cell Biol 89 (S1):67–68
7.
A
Fung
,
C
Tsiokos
,
O
Paydar
,
L
Chen
,
S
Jin
,
Y
Wang
and
J
Judy
,
Nano Lett
10
,
4321
(
2010
).
8.
G
Gabriel
,
R
Gómez
,
M
Bongard
,
N
Benito
,
E
Fernández
and
R
Villa
,
Biosens Bioelectron
24
,
1942
(
2009
).
9.
Gambazzi L, Toma F, Goff A, Fuchsberger K, Cipollone S, Stelzle M, Prato M, Markram H Giugliano M (2010) Bidirectional interfacing of carbon nanotube substrates to neuronal networks. 7th Meeting on substrate-integrated microelectrodes Reutlingen, Germany, p 234–35
10.
S
Garibaldi
,
C
Brunelli
,
V
Bavastrello
,
G
Ghigliotti
and
C
Nicolini
,
Nanotechnology
17
,
391
(
2006
).
11.
Gerwig R, Fuchsberger K, Herrmann T Stelzle M (2011) CNT- and CNT/polymer-composite electrodes for neuronal diagnostics in MikroSystemTechnik Kongress (Darmstadt, Germany), VDE Verlag GmbH, Berlin, p 701–703
12.
R
Joshi
,
J
Schneider
,
O
Yilmazoglu
and
D
Pavlidis
,
J Mater Chem
20
,
1717
(
2010
).
13.
Kovacs G (1994) Enabling technologies for cultured neural networks. Academic Press, New York, p 121–65
14.
V
Martinelli
,
G
Cellot
,
F
Toma
,
C
Long
,
J
Caldwell
,
L
Zentilin
,
M
Giacca
,
A
Turco
,
M
Prato
,
L
Ballerini
and
L
Mestroni
,
Nano Lett
12
,
1831
(
2012
).
16.
T
Meyer
,
K
Boven
,
E
Gunther
and
M
Fejtl
,
Drug Saf
27
,
763
(
2004
).
17.
H
Mond
and
A
Proclemer
,
Pacing Clin Electrophysiol
34
,
1013
(
2011
).
18.
B
Nguyen-Vu
,
H
Chen
,
A
Cassell
,
R
Andrews
,
M
Meyyappan
and
J
Li
,
IEEE Trans Biomed Eng
54
,
1121
(
2007
).
19.
Nick C, Joshi R, Schlaak H, Schneider J Thielemann C (2011) Multi electrode array with carbon nanotube electrodes for the extracellular detection of action potentials in MikroSystemTechnik Kongress (Darmstadt, Germany), VDE Verlag GmbH, Berlin, p 720–23
20.
Nick C, Joshi R, Schneider J, Thielemann C (2012) Int J Surf Sci Eng (in press)
21.
J
Park
,
S
Rosenblatt
,
Y
Yaish
,
V
Sazonova
,
H
Üstünel
,
S
Braig
,
T
Arias
,
P
Brouwer
and
P
McEuen
,
Nano Lett
4
,
517
(
2004
).
22.
R
Saito
,
G
Dresselhaus
and
M
Dresselhaus
,
Physical properties of carbon nanotubes
(
Imperial College Press
,
London
,
2001
).
23.
R
Sorkin
,
T
Gabay
,
P
Blinder
,
D
Baranes
,
E
Ben-Jacob
and
Y
Hanein
,
J Neural Eng
3
,
95
(
2006
).
24.
D
Tasis
,
N
Tagmatarchis
,
A
Bianco
and
M
Prato
,
Chem Rev
106
,
1105
(
2006
).
25.
Wang K, Dai H, Fishman H, Harris J (2005) Proceedings of SPIE-microfluidics, bioMEMS and medical microsystems III, San Jose, p 22–29
This content is only available via PDF.