Neutron reflectometry was used to investigate the structures of end-tethered protein resistant polymer layers based on poly(oligo(ethylene glycol) methyl ether methacrylate) [poly(OEGMA)] and poly(2-methacryloyloxyethyl phosphorylcholine) [poly(MPC)]. Layers having different graft densities were studied in both the dry and wet states. A stretched parabolic model was used to fit the neutron data, resulting in a one-dimensional scattering length density profile of the polymer volume fraction normal to the film. Measured in D2O, the cutoff thicknesses of OEGMA and MPC layers at high graft density (0.39 chains/nm2 for OEGMA and 0.30 chains/nm2 for MPC) and a chain length of 200 repeat units were 450 and 470 Å, respectively, close to their contour length of 500 Å, suggesting that the grafts become highly hydrated when exposed to water. It was also found that at similar graft density and chain length, the volume fraction profiles of poly(OEGMA) and poly(MPC) layers are similar, in line with the authors’ previous results showing that these surfaces have similar protein resistance [W. Feng et al., BioInterphases 1, 50 (2006)]. The possible correlation of protein resistance to water content as indicated by the average number of water molecules per ethylene oxide (Nw,EO) or phosphorylcholine (Nw,PC) moiety was investigated. Nw,EO and Nw,PC, estimated from the volume fraction data, increased with decreasing graft density, and when compared to the reported number of water molecules in the hydration layers of EO and PC residues, led to the conclusion that water content slightly greater than the water of hydration resulted in protein resistant surfaces, whereas water content either less than or greatly in excess of the water of hydration resulted in layers of reduced protein resistance.

1
Proteins at Interfaces II, Fundamentals and Applications
, edited by
T. A.
Horbett
and
J. L.
Brash
(
American Chemical Society
,
Washington DC
,
1995
).
2
D. G.
Castner
and
B. D.
Ratner
,
Surf. Sci.
500
,
28
(
2002
).
3
J. L.
Brash
,
J. Biomater. Sci., Polym. Ed.
11
,
1135
(
2000
).
4
M.
Tirrell
,
E.
Kokkoli
and
M.
Biesalski
,
Surf. Sci.
500
,
61
(
2002
).
5
B.
Kasemo
,
Surf. Sci.
500
,
656
(
2002
).
6
J. H.
Lee
and
J. D.
Andrade
,
Prog. Polym. Sci.
20
,
1043
(
1995
).
7
M.
Morra
,
J. Biomater. Sci., Polym. Ed.
11
,
547
(
2000
).
8
A. L.
Lewis
,
Colloids Surf., B
18
,
261
(
2000
).
9
P.
Vermette
and
L.
Meagher
,
Colloids Surf., B
28
,
153
(
2003
).
10
Y.
Iwasaki
and
K.
Ishihara
,
Anal. Bioanal. Chem.
381
,
534
(
2005
).
11
P.
Harder
,
M.
runze
,
R.
Dahint
,
G. M.
Whitesides
and
P. E.
Laibinis
,
J. Phys. Chem. B
102
,
426
(
1998
).
12
S. J.
Sofia
,
V.
Premnath
and
E. W.
Merrill
,
Macromolecules
31,
,
5059
(
1998
).
13
W.
Norde
and
D.
Gage
,
Langmuir
20
,
4162
(
2004
).
14
G. L.
Kenausis
et al.,
J. Phys. Chem. B
104
,
3298
(
2000
).
15
L. D.
Unsworth
,
H.
Sheardown
and
J. L.
Brash
,
Langmuir
21
,
1036
(
2005
).
16
D. J.
Vanderah
,
L.
La
,
J.
Naff
,
V.
Silin
and
K. A.
Rubinson
,
J. Am. Chem. Soc.
126
,
13639
(
2004
).
17
J.
Zheng
,
L. Y.
Li
,
S. F.
Chen
and
S. Y.
Jiang
,
Langmuir
20
,
8931
(
2004
).
18
L. D.
Unsworth
,
Z.
Tun
,
H.
Sheardown
and
J. L.
Brash
,
J. Colloid Interface Sci.
296
,
520
(
2006
).
19
A. J.
Pertsin
and
M.
Grunze
,
Langmuir
16
,
8829
(
2000
).
20
R. L. C.
Wang
,
H. J.
Kreuzer
and
M.
Grunze
,
J. Phys. Chem.
101
,
9767
(
1997
).
21
R. Y.
Wang
,
M.
Himmelhaus
,
J.
Fick
,
S.
Herrwerth
,
W.
Eck
and
M.
Grunze
,
J. Chem. Phys.
122
,
164702
(
2005
).
22
K.
Ishihara
,
H.
Nomura
,
T.
Mihara
,
K.
Kurita
,
Y.
Iwasake
and
N.
Nakabayashi
,
J. Biomed. Mater. Res.
39
,
323
(
1998
).
23
H.
Kitano
,
K.
Sudo
,
K.
Ichikawa
,
M.
Ide
and
K.
Ishihara
,
J. Phys. Chem. B
104
,
11425
(
2000
).
24
H.
Kitano
,
M.
Imai
,
T.
Mori
,
M.
Gemmei-Ide
,
Y.
Yokoyama
and
K.
Ishihara
,
Langmuir
19
,
10260
(
2003
).
25
W.
Feng
,
S. P.
Zhu
,
K.
Ishihara
and
J. L.
Brash
,
BioInterphases
1
,
50
(
2006
).
26
J. R.
Lu
,
R. K.
Thomas
and
J.
Penfold
,
Adv. Colloid Interface Sci.
84
,
43
(
2000
).
27
M. S.
Kent
,
L. T.
Lee
,
B. J.
Factor
,
F.
Rondelez
and
G. S.
Smith
,
J. Chem. Phys.
103
,
2320
(
1995
).
28
A.
Karim
,
S. K.
Satija
,
J. F.
Douglas
,
J. F.
Ankner
and
L.
Fetters
,
Phys. Rev. Lett.
73
,
3407
(
1994
).
29
H.
Yim
,
M. S.
Kent
,
S.
Mendez
,
G. P.
Lopez
,
S.
Satija
and
Y.
Seo
,
Macromolecules
39
,
3420
(
2006
).
30
W.
Feng
,
J.
Brash
and
S. P.
Zhu
,
J. Polym. Sci., Part A: Polym. Chem.
42
,
2931
(
2004
).
31
M.
Husseman
et al.,
Macromolecules
32
,
1424
(
1999
).
32
K.
Matyjaszewski
et al.,
Macromolecules
32
,
8716
(
1999
).
33
W.
Feng
,
R. X.
Chen
,
J. L.
Brash
and
S. P.
Zhu
,
Macromol. Rapid Commun.
26
,
1383
(
2005
).
34
W.
Feng
,
J. L.
Brash
and
S. P.
Zhu
,
Biomaterials
27
,
847
(
2006
).
35
K.
Jankova
,
X. Y.
Chen
,
J.
Kops
and
W.
Batsberg
,
Macromolecules
31
,
538
(
1998
).
36
R.
Iwata
,
P.
Suk-In
,
V. P.
Hoven
,
A.
Takahara
,
K.
Akiyoshi
and
Y.
Iwasaki
,
Biomacromolecules
5
,
2308
(
2004
).
37
K.
Yamamoto
,
Y.
Miwa
,
H.
Tanaka
,
M.
Sakaguchi
and
S.
Shimada
,
J. Polym. Sci., Part A: Polym. Chem.
40
,
3350
(
2002
).
38
T. A.
Harroun
,
H.
Fritzsche
,
M. J.
Watson
,
K. G.
Yager
,
O. M.
Tanchak
,
C. J.
Barrett
and
J.
Katsaras
,
Rev. Sci. Instrum.
76
,
065101
(
2005
).
39
M. S.
Kent
,
J.
Majewski
,
G. S.
Smith
,
L. T.
Lee
and
S.
Satija
,
J. Chem. Phys.
108
,
5635
(
1998
).
40
S. M.
Sirard
,
R. R.
Gupta
,
T. P.
Russell
,
J. J.
Watkins
,
P. F.
Green
and
K. P.
Johnston
,
Macromolecules
36
,
3365
(
2003
).
41
W.
Feng
,
S. P.
Zhu
,
K.
Ishihara
and
J. L.
Brash
,
Langmuir
21
,
5980
(
2005
).
42
P. G.
Gennes
,
Macromolecules
13
,
1069
(
1980
).
43
S. T.
Milner
,
T. A.
Witten
and
M. E.
Cates
,
Macromolecules
21
,
2610
(
1998
).
44
E. B.
Zhulina
,
O. V.
Borisov
,
V. A.
Pryamitsyn
and
T. M.
Birshtein
,
Macromolecules
24
,
140
(
1991
).
45
S. T.
Milner
,
Science
251
,
905
(
1991
).
46
M. S.
Kent
,
L. T.
Lee
,
B.
Farnoux
and
F.
Rondelez
,
Macromolecules
25
,
6240
(
1992
).
47
M. S.
Kent
,
B. J.
Factor
,
S.
Satija
,
P.
Gallagher
and
G. S.
Smith
,
Macromolecules
29
,
2843
(
1996
).
48
S. T.
Milner
,
T. A.
Witten
and
M. E.
Cates
,
Macromolecules
22
,
853
(
1989
).
49
T. M.
Birshtein
,
Y. V.
Liatskaya
and
E. B.
Zhulina
,
Polymer
31
,
2185
(
1990
).
50
G.
Kritikos
and
A. F.
Terzis
,
Polymer
46
,
8355
(
2005
).
51
H.
Yim
,
M. S.
Kent
,
S.
Mendez
,
S. S.
Balamurugan
,
S.
Balamurugan
,
G. P.
Lopez
and
S.
Satija
,
Macromolecules
37
,
1994
(
2004
).
52
C.
Devaux
,
F.
Cousin
,
E.
Beyou
and
J. P.
Chapel
,
Macromolecules
38
,
4296
(
2005
).
53
R.
Levicky
,
N.
Koneripalli
,
M.
Tirrell
and
S.
Satija
,
Macromolecules
31
,
3731
(
1998
).
54
N. J.
Tao
,
S. M.
Lindsay
and
A.
Rupprecht
,
Biopolymers
28
,
1019
(
1989
).
55
E. E.
Dormidontova
,
Macromolecules
35
,
987
(
2002
).
56
G.
Maisano
,
D.
Majolino
,
P.
Migliardo
,
S.
Venuto
,
F.
Aliotta
and
S.
Magazu
,
Mol. Phys.
78
,
421
(
1993
).
57
J.
Fick
,
R.
Steitz
,
V.
Leiner
,
S.
Tokumitsu
,
M.
Himmelhaus
and
M.
Grunze
,
Langmuir
20
,
3848
(
2004
).
58
O.
Albrecht
,
H.
Gruler
and
E.
Sackmann
,
J. Phys. (Paris)
39
,
301
(
1978
).
59
C.
Naumann
,
T.
Brumm
,
A. R.
Rennie
,
J.
Penfold
and
T. M.
Bayerl
,
Langmuir
11
,
3948
(
1995
).
60
M. L.
Berkowitz
,
D. L.
Bostick
and
S.
Pandit
,
Chem. Rev. (Washington, D.C.)
106
,
1527
(
2006
).
61
S. A.
Pandit
,
D.
Bostick
and
M. L.
Lerkowitz
,
J. Chem. Phys.
119
,
2199
(
2003
).
62
M. J.
Ruocco
and
G. G.
Shipley
,
Biochim. Biophys. Acta
691
,
309
(
1982
).
63
M.
Yaseen
,
J. R.
Lu
,
J. R. P.
Webster
and
J.
Penfold
,
Langmuir
22
,
5825
(
2006
).
This content is only available via PDF.