Oxidative stress is a condition when the concentration of free radicals and reactive molecular species rise above certain level in living systems. This condition not only perturbs the normal physiology of the system but also has been implicated in many diseases in humans and other animals. Hydrogen peroxide (H2O2) is known to be involved in induction of oxidative stress and has also been linked to a variety of ailments such as inflammation, rheumatoid arthritis, diabetes, and cancer in humans. It is one of the more stable reactive molecular species present in living systems. Because of its stability and links with various diseases, sensing the level of H2O2 can be of great help in diagnosing these diseases, thereby easing disease management and amelioration. Nanoceria is a potent candidate in free radical scavenging as well as sensing because of its unique redox properties. These properties have been exploited, in the reported work, to sense and quantify peroxide levels. Nanoceria has been synthesized using different capping agents: Hexamethylene-tetra-amine (HMTA) and fructose. CeO2-HMTA show rhombohedral and cubic 6.4 nm particles whereas CeO2-fructose are found to be spherical with average particle diameter size 5.8 nm. CeO2-HMTA, due to the better exposure of the active (200) and (220) planes relative to (111) plane, exhibits superior electrocatalytic activity toward H2O2 reduction. Amperometric responses were measured by increasing H2O2 concentration. The authors observed a sensitivity of 21.13 and 9.6 μA cm−2 mM−1 for CeO2-HMTA and CeO2-fructose, respectively. The response time of 4.8 and 6.5 s was observed for CeO2-HMTA and CeO2-fructose, respectively. The limit of detection is as low as 0.6 and 2.0 μM at S/N ratio 3 for CeO2-HMTA and CeO2-fructose, respectively. Ceria-HMTA was further tested for its antioxidant activity in an animal cell line in vitro and the results confirmed its activity.

1.
J.
Stubbe
and
W. A.
van der Donk
,
Chem. Rev.
98
,
705
(
1998
).
2.
Y.-B.
Deng
,
J.-H.
Cai
, and
P.
Zhou
,
Spectrosc. Lett.
45
,
285
(
2012
).
3.
M.
Roy
,
S. K.
Meena
,
S. K.
Singh
,
N. K.
Sethy
,
K.
Bhargava
,
S.
Sarkar
, and
M.
Das
,
Mater. Express
3
,
43
(
2013
).
4.
B.
Halliwell
,
eLS
(
John Wiley & Sons, Ltd
,
2001
).
5.
L. J.
Ignarro
,
Annu. Rev. Pharmacol.
30
,
535
(
1990
).
6.
S.
Moncada
,
R. M.
Palmer
, and
E. A.
Higgs
,
Pharmacol. Rev.
43
,
109
(
1991
).
7.
G. I.
Giles
,
K. M.
Tasker
, and
C.
Jacob
,
Free Radical Biol. Med.
31
,
1279
(
2001
).
8.
Q.
Zhang
,
Y.
Li
,
D.
Chen
,
Y.
Yu
,
L.
Duan
,
B.
Shen
, and
W.
Liu
,
Nat. Chem. Biol.
7
,
154
(
2011
).
9.
J. T.
Hancock
,
R.
Desikan
, and
S. J.
Neill
,
Biochem. Soc. Trans.
29
,
345
(
2001
).
10.
See supplementary material http://dx.doi.org/10.1116/1.4890473 for FTIR, cell culture and other detailed information on experimental protocols.
11.
P. J.
Hissin
and
R.
Hilf
,
Anal. Biochem.
74
,
214
(
1976
).
12.
L. A.
Sena
and
N. S.
Chandel
,
Mol. Cell
48
,
158
(
2012
).
13.
A.
Boveris
,
Method Enzymol
, edited by
P.
Lester
(
Academic
,
1984
), Vol.
105
, pp.
429
435
.
14.
J. P.
Robinson
,
L. H.
Bruner
,
C. F.
Bassoe
,
J. L.
Hudson
,
P. A.
Ward
, and
S. H.
Phan
,
J. Leukocyte Biol.
43
,
304
(
1988
).
15.
V. L.
Kinnula
,
Z.
Mirza
,
J. D.
Crapo
, and
A. R.
Whorton
,
Am. J. Respir. Cell Mol. Biol.
9
,
603
(
1993
).
16.
F.
Meng
,
X.
Yan
,
J.
Liu
,
J.
Gu
, and
Z.
Zou
,
Electrochim. Acta
56
,
4657
(
2011
).
17.
H. G.
Utley
,
F.
Bernheim
, and
P.
Hochstein
,
Arch. Biochem. Biophys.
118
,
29
(
1967
).
18.
M. C.
Polidori
,
W.
Stahl
,
O.
Eichler
,
I.
Niestroj
, and
H.
Sies
,
Free Radical Biol. Med.
30
,
456
(
2001
).
19.
I.
Fridovich
,
Handbook of Methods for Oxygen Radical Research
(
CRC
,
Florida
,
1985
), pp.
121
–122.
20.
R. W.
Tarnuzzer
,
J.
Colon
,
S.
Patil
, and
S.
Seal
,
Nano Lett.
5
,
2573
(
2005
).
21.
J.
Chen
,
S.
Patil
,
S.
Seal
, and
J. F.
McGinnis
,
Nat. Nano
1
,
142
(
2006
).
22.
D.
Schubert
,
R.
Dargusch
,
J.
Raitano
, and
S.-W.
Chan
,
Biochem. Biophys. Res. Commun.
342
,
86
(
2006
).
23.
M.
Das
,
S.
Patil
,
N.
Bhargava
,
J.-F.
Kang
,
L. M.
Riedel
,
S.
Seal
, and
J. J.
Hickman
,
Biomaterials
28
,
1918
(
2007
).
24.
N.
Singh
,
C. A.
Cohen
, and
B. A.
Rzigalinski
,
Ann. NY Acad. Sci.
1122
,
219
(
2007
).
25.
N.
Bhargava
,
M.
Das
,
A. S.
Karakoti
,
S.
Patil
,
J. F.
Kang
,
M.
Stancescu
,
M. S.
Kindy
,
S.
Seal
, and
J. J.
Hickman
,
J. Nanoneurosci.
1
,
130
(
2009
).
26.
J.
Niu
,
A.
Azfer
,
L. M.
Rogers
,
X.
Wang
, and
P. E.
Kolattukudy
,
Cardiovasc. Res.
73
,
549
(
2007
).
28.
T.
Pirmohamed
,
J. M.
Dowding
,
S.
Singh
,
B.
Wasserman
,
E.
Heckert
,
A. S.
Karakoti
,
J. E.
King
,
S.
Seal
, and
W. T.
Self
,
Chem. Commun.
46
,
2736
(
2010
).
29.
E. G.
Heckert
,
A. S.
Karakoti
,
S.
Seal
, and
W. T.
Self
,
Biomaterials
29
,
2705
(
2008
).
30.
M.
Dejhosseini
,
T.
Aida
,
M.
Watanabe
,
S.
Takami
,
D.
Hojo
,
N.
Aoki
,
T.
Arita
,
A.
Kishita
, and
T.
Adschiri
,
Energy Fuels
27
,
4624
(
2013
).
31.
F.
Zhang
,
S.-W.
Chan
,
J. E.
Spanier
,
E.
Apak
,
Q.
Jin
,
R. D.
Robinson
, and
I. P.
Herman
,
Appl. Phys. Lett.
80
,
127
(
2002
).
32.
Y.
Yang
,
Y.
Yang
,
X.
Du
,
Y.
Chen
,
Z.
Zhang
, and
J.
Zhang
,
Appl. Surf. Sci.
305
,
330
(
2014
).
33.
N. J.
Lawrence
 et al.,
Nano Lett.
11
,
2666
(
2011
).
34.
A.
Kumar
,
S.
Babu
,
A. S.
Karakoti
,
A.
Schulte
, and
S.
Seal
,
Langmuir
25
,
10998
(
2009
).
35.
A.
Mehta
,
S.
Patil
,
H.
Bang
,
H. J.
Cho
, and
S.
Seal
,
Sens. Actuators, A
134
,
146
(
2007
).
36.
N.
Yi
,
R.
Si
,
H.
Saltsburg
, and
M.
Flytzani-Stephanopoulos
,
Energy Environ. Sci.
3
,
831
(
2010
).
37.
X.
Jiao
,
H.
Song
,
H.
Zhao
,
W.
Bai
,
L.
Zhang
, and
Y.
Lv
,
Anal. Methods
4
,
3261
(
2012
).
38.
A. T.
Shah
,
B.
Li
, and
Z. E. A.
Abdalla
,
Microporous Mesoporous Mater.
130
,
248
(
2010
).
39.
D. L.
Pavia
,
G.
Lampman
,
G. S.
Kriz
, and
J. R.
Vyvyan
,
Cengage Learning
(
2007
).
40.
S.
Liu
and
H.
Ju
,
Biosens. Bioelectron.
19
,
177
(
2003
).
41.
M. A.
Kiani
,
M. F.
Mousavi
, and
S.
Ghasemi
,
J. Power Sources
195
,
5794
(
2010
).
42.
G. P.
Pandey
,
A. C.
Rastogi
, and
C. R.
Westgate
,
J. Power Sources
245
,
857
(
2014
).
43.
M.
Malviya
,
J.
Singh
,
B.
Lal
, and
R. N.
Singh
,
J. New Mater. Electrochem. Syst.
8
,
223
(
2005
).
44.
A.
Arya
,
N. Kumar
Sethy
,
M.
Ddas
, and
K.
Bhargava
,
Free Radical Biol. Med.
53
,
S102
(
2012
).
45.
A. P.
Levy
,
N. S.
Levy
, and
M. A.
Goldberg
,
J. Biol. Chem.
271
,
2746
(
1996
).
46.
G. M.
Benhusein
,
E.
Mutch
,
S.
Aburawi
, and
F. M.
Williams
,
Libyan J. Med.
5
,
4637
(
2010
).
47.
H.
Song
 et al.,
Stem Cells
28
,
555
(
2010
).
48.
P.
Chiarugi
,
Ital. J. Biochem.
52
,
28
(
2003
).
49.
W.
Chen
,
S.
Cai
,
Q.-Q.
Ren
,
W.
Wen
, and
Y.-D.
Zhao
,
Analyst
137
,
49
(
2012
).
50.
C.
Korsvik
,
S.
Patil
,
S.
Seal
, and
W. T.
Self
,
Chem. Commun.
14
,
1056
(
2007
).
51.
A. A.
Ismail
,
A.
El-Midany
,
E. A.
Abdel-Aal
, and
H.
El-Shall
,
Mater. Lett.
59
,
1924
(
2005
).
52.
F.
Heshmatpour
and
R. B.
Aghakhanpour
,
Powder Technol.
205
,
193
(
2011
).

Supplementary Material

You do not currently have access to this content.