Therapy resistance is a major reason for the fatal consequences of cancer. The tumor microenvironment (TME) often is associated with the production of excess reactive oxygen species (ROS). ROS are capable of introducing oxidative post-translational modifications (oxPTMs) to proteins targeted in cancer therapy, such as tyrosine kinases (TKs), and ROS could render their functionality. However, little is known about the occurrence or magnitude of such processes, partially because mimicking the TME producing several short-lived ROS types at once is technically challenging. Gas plasma technology, a partially ionized gas generating a multitude of ROS types simultaneously and at high concentrations, was used to model pro-oxidative conditions in the TME and study the functional consequences in three TKs (epidermal growth factor receptor, sarcoma, and vascular endothelial growth factor receptor 2) targeted clinically. TKs dissolved in liquids were exposed to gas plasma, and a drastic reduction in their activity was observed. Hypothesizing that this was due to gas plasma-generated ROS, plasma-treated TKs were analyzed by high-resolution mass spectrometry for the type and quantity of oxPTM types using an in-house database. Preferred oxidation targets were identified as sulfur-containing and aromatic amino acids. OxPTMs were detected on amino acid residues that have important structural or catalytic functions in TKs, such as the adenosine triphosphate-binding site, but also on amino acid residues that are targets for therapeutic applications, such as TK inhibitors. While the practical relevance of these findings remains to be discovered, our results suggest that excessive ROS concentrations potentially contribute to TK activity reduction in the TME. The mass spectrometry data are available via ProteomeXchange with identifier PXD056912.

1.
F.
Ardito
,
M.
Giuliani
,
D.
Perrone
,
G.
Troiano
, and
L. Lo
Muzio
,
Int. J. Mol. Med.
40
,
271
(
2017
).
2.
T.
Pawson
and
J. D.
Scott
,
Trends Biochem. Sci.
30
,
286
(
2005
).
3.
M. K.
Paul
and
A. K.
Mukhopadhyay
,
Int. J. Med. Sci.
1
,
101
(
2004
).
4.
D. R.
Robinson
,
Y. M.
Wu
, and
S. F.
Lin
,
Oncogene
19
,
5548
(
2000
).
5.
S. R.
Hubbard
and
W. T.
Miller
,
Curr. Opin. Cell Biol.
19
,
117
(
2007
).
6.
S.
Solouki
,
A.
August
, and
W.
Huang
,
Pharmacol. Ther.
201
,
39
(
2019
).
7.
S.
Sigismund
,
D.
Avanzato
, and
L.
Lanzetti
,
Mol. Oncol.
12
,
3
(
2018
).
8.
S. J.
Modi
and
V. M.
Kulkarni
,
Med. Drug Discovery
2
, 100009 (
2019
).
9.
A. H. S.
Yehya
,
Muhammad
Asif
,
Sven
Petersen
,
Ayappa
Subramaniam
,
Koji
Kono
,
Amin
Majid
, and
Chern
Oon
,
Medicina (Kaunas)
54
, 1 (
2018
).
10.
T. J.
Yeatman
,
Nat. Rev. Cancer
4
,
470
(
2004
).
11.
R.
Roskoski
, Jr.
,
Biochem. Biophys. Res. Commun.
324
,
1155
(
2004
).
12.
C.
Pottier
,
M.
Fresnais
,
M.
Gilon
,
G.
Jérusalem
,
R.
Longuespée
, and
N. E.
Sounni
,
Cancers (Basel)
12
, 731 (
2020
).
13.
W. Z.
Zhong
,
Q.
Zhou
, and
Y. L.
Wu
,
Oncotarget
8
,
71358
(
2017
).
14.
15.
Q.
Jiao
,
L.
Bi
,
Y.
Ren
,
S.
Song
,
Q.
Wang
, and
Y.-s.
Wang
,
Mol. Cancer
17
,
36
(
2018
).
16.
N. M.
Anderson
and
M. C.
Simon
,
Curr. Biol.
30
,
R921
(
2020
).
17.
V.
Helfinger
and
K.
Schroder
,
Mol. Aspects Med.
63
,
88
(
2018
).
18.
F.
Weinberg
,
N.
Ramnath
, and
D.
Nagrath
,
Cancers
11
,
1191
(
2019
).
19.
R.
Clemen
et al,
Adv. Sci.
8
,
2003395
(
2021
).
20.
M.
Yusupov
,
J.-W.
Lackmann
,
J.
Razzokov
,
S.
Kumar
,
K.
Stapelmann
, and
A.
Bogaerts
,
Plasma Process Polym.
15
,
1800022
(
2018
).
21.
R.
Torosantucci
,
C.
Schoneich
, and
W.
Jiskoot
,
Pharm. Res.
31
,
541
(
2014
).
22.
S.
Gupta
,
W.
Jiskoot
,
C.
Schöneich
, and
A. S.
Rathore
,
J. Pharm. Sci.
111
,
903
(
2022
).
23.
E.
Fuentes-Lemus
,
J. S.
Reyes
,
L. F.
Gamon
,
C.
López-Alarcón
, and
M. J.
Davies
,
Redox Biol.
48
,
102202
(
2021
).
24.
C. L.
Hawkins
and
M. J.
Davies
,
J. Biol. Chem.
294
,
19683
(
2019
).
25.
X.
Gu
,
Susan Gillette
Meer
,
Masaru
Miyagi
,
Mary E.
Rayborn
,
Joe G.
Hollyfield
,
John W.
Crabb
, and
Robert G.
Salomon
,
J. Biol. Chem.
278
,
42027
(
2003
).
26.
C.
Lennicke
and
H. M.
Cocheme
,
Mol. Cell
81
,
3691
(
2021
).
27.
S.
Bekeschus
,
A.
Schmidt
,
K.-D.
Weltmann
, and
T.
von Woedtke
,
Clin. Plasma Med.
4
,
19
(
2016
).
28.
J.
Rappsilber
,
M.
Mann
, and
Y.
Ishihama
,
Nat. Protoc.
2
,
1896
(
2007
).
29.
S.
Wenske
,
J. W.
Lackmann
,
L. M.
Busch
,
S.
Bekeschus
,
T.
von Woedtke
, and
K.
Wende
,
J. Appl. Phys.
129
,
193305
(
2021
).
30.
Z.
Nasri
et al,
Chem. A: Eur. J.
27
,
14702
(
2021
).
31.
S.
Wenske
,
J. W.
Lackmann
,
S.
Bekeschus
,
K. D.
Weltmann
,
T.
von Woedtke
, and
K.
Wende
,
Biointerphases
15
,
061008
(
2020
).
32.
S.
Tyanova
,
Tikira
Temu
,
Pavel
Sinitcyn
,
Arthur
Carlson
,
Marco Y
Hein
,
Tamar
Geiger
,
Matthias
Mann
, and
Jürgen
Cox
,
Nat. Methods
13
,
731
(
2016
).
33.
U.
Omasits
,
C. H.
Ahrens
,
S.
Müller
, and
B.
Wollscheid
,
Bioinformatics
30
,
884
(
2014
).
34.
N. S.
Aboelella
,
C.
Brandle
,
T.
Kim
,
Z. C.
Ding
, and
G.
Zhou
,
Cancers (Basel)
13
, 986 (
2021
).
35.
S.
Reuter
,
T.
von Woedtke
, and
K. D.
Weltmann
,
J. Phys. D: Appl. Phys.
51
,
233001
(
2018
).
36.
F.
Tampieri
,
M. P.
Ginebra
, and
C.
Canal
,
Anal. Chem.
93
,
3666
(
2021
).
37.
A.
Schmidt-Bleker
,
J.
Winter
,
A.
Bösel
,
S.
Reuter
, and
K. D.
Weltmann
,
Plasma Sources Sci. Technol.
25
,
015005
(
2016
).
38.
B.
Myers
,
P.
Ranieri
,
T.
Smirnova
,
P.
Hewitt
,
D.
Peterson
,
M.
Herrera Quesada
,
E.
Lenker
, and
K.
Stapelmann
,
J. Phys. D: Appl. Phys.
54
, 100009 (
2021
).
39.
K.
Wende
et al,
Biointerphases
10
,
029518
(
2015
).
40.
V.
Jirásek
and
P.
Lukeš
,
Plasma Sources Sci. Technol.
28
,
035015
(
2019
).
41.
H.
Jablonowski
,
J.
Santos Sousa
,
K. D.
Weltmann
,
K.
Wende
, and
S.
Reuter
,
Sci. Rep.
8
,
12195
(
2018
).
42.
G. E.
Ronsein
,
M. C. B.
Oliveira
,
S.
Miyamoto
,
M. H. G.
Medeiros
, and
P.
Di Mascio
,
Chem. Res. Toxicol.
21
,
1271
(
2008
).
43.
H.
Tang
,
Q.
Hao
,
S. A.
Rutherford
,
B.
Low
, and
Z. J.
Zhao
,
J. Biol. Chem.
280
,
23918
(
2005
).
44.
45.
B.
Perillo
,
Marzia
Di Donato
,
Antonio
Pezone
,
Erika
Di Zazzo
,
Pia
Giovannelli
,
Giovanni
Galasso
,
Gabriella
Castoria
, and
Antimo
Migliaccio
,
Exp. Mol. Med.
52
,
192
(
2020
).
46.
K.
Wende
,
Giuliana
Bruno
,
Michael
Lalk
,
Klaus-Dieter
Weltmann
,
Thomas
von Woedtke
,
Sander
Bekeschus
, and
Jan-Wilm
Lackmann
,
RSC Adv.
10
,
11598
(
2020
).
47.
G.
Bruno
,
S.
Wenske
,
J. W.
Lackmann
,
M.
Lalk
,
T.
von Woedtke
, and
K.
Wende
,
Biomolecules
10
,
1687
(
2020
).
48.
E.
Takai
,
Tsuyoshi
Kitamura
,
Junpei
Kuwabara
,
Satoshi
Ikawa
,
Shunsuke
Yoshizawa
,
Kentaro
Shiraki
,
Hideya
Kawasaki
,
Ryuichi
Arakawa
, and
Katsuhisa
Kitano
,
J. Phys. D: Appl. Phys.
47
,
285403
(
2014
).
49.
C. C. W.
Verlackt
,
W.
Van Boxem
,
D.
Dewaele
,
F.
Lemière
,
F.
Sobott
,
J.
Benedikt
,
E. C.
Neyts
, and
A.
Bogaerts
,
J. Phys. Chem. C
121
,
5787
(
2017
).
50.
C.
Klinkhammer
,
Christof
Verlackt
,
Dariusz
śmiłowicz
,
Friederike
Kogelheide
,
Annemie
Bogaerts
,
Nils
Metzler-Nolte
,
Katharina
Stapelmann
,
Martina
Havenith
, and
Jan-Wilm
Lackmann
,
Sci. Rep.
7
,
13828
(
2017
).
51.
M.
Bern
,
Y. J.
Kil
, and
C.
Becker
,
Curr. Protoc. Bioinformatics
40
,
13.20
(
2012
).
52.
V.
Nogueira
and
N.
Hay
,
Clin. Cancer Res.
19
,
4309
(
2013
).
53.
N.
Jura
,
Nicholas F.
Endres
,
Kate
Engel
,
Sebastian
Deindl
,
Rahul
Das
,
Meindert H.
Lamers
,
David E.
Wemmer
,
Xuewu
Zhang
, and
John
Kuriyan
,
Cell
137
,
1293
(
2009
).
54.
55.
W. J.
Wedemeyer
,
E.
Welker
,
M.
Narayan
, and
H. A.
Scheraga
,
Biochemistry
39
,
4207
(
2000
).
56.
R.
Clemen
,
Lara
Minkus
,
Debora
Singer
,
Paul
Schulan
,
Thomas
von Woedtke
,
Kristian
Wende
, and
Sander
Bekeschus
,
Antioxidants (Basel)
12
,
1936
(
2023
).
57.
J. W.
Lackmann
et al,
J. Phys. D: Appl. Phys.
48
,
494003
(
2015
).
58.
J.
Tong
,
P.
Taylor
,
S. M.
Peterman
,
A.
Prakash
, and
M. F.
Moran
,
Mol. Cell. Proteomics
8
,
2131
(
2009
).
59.
J. F.
Flynn
,
C.
Wong
, and
J. M.
Wu
,
J. Oncol.
2009
,
1
(
2009
).
60.
D. A.
Wiseman
and
D. C.
Thurmond
,
Curr. Diabetes Rev.
8
,
303
(
2012
).
61.
N.
Campolo
,
F. M.
Issoglio
,
D. A.
Estrin
,
S.
Bartesaghi
, and
R.
Radi
,
Essays Biochem.
64
,
111
(
2020
).
62.
R. L.
Jensen
,
J.
Arnbjerg
, and
P. R.
Ogilby
,
J. Am. Chem. Soc.
134
,
9820
(
2012
).
63.
J. M.
Foster
,
Uppala
Radhakrishna
,
Venkatesh
Govindarajan
,
Joseph H.
Carreau
,
Zoran
Gatalica
,
Poonam
Sharma
,
Swapan K.
Nath
, and
Brian W.
Loggie
,
World J. Surg. Oncol.
8
,
88
(
2010
).
64.
S.
Bellmaine
,
A.
Schnellbaecher
, and
A.
Zimmer
,
Free Radical Bio. Med.
160
,
696
(
2020
).
65.
S.
Barik
,
Int. J. Mol. Sci.
21
, 1 (
2020
).
66.
X.
Wang
,
A. M.
Bove
,
G.
Simone
, and
B.
Ma
,
Front. Cell Dev. Biol.
8
,
599281
(
2020
).
67.
E. J.
Jang
,
Hyoung Oh
Jeong
,
Daeui
Park
,
Dae Hyun
Kim
,
Yeon Ja
Choi
,
Ki Wung
Chung
,
Min Hi
Park
,
Byung Pal
Yu
, and
Hae Young
Chung
,
PLoS One
10
,
e0129244
(
2015
).
68.
E. R.
Stadtman
and
R. L.
Levine
,
Amino Acids
25
,
207
(
2003
).
69.
M. Y.
Chang
,
D. Y.
Huang
,
F. M.
Ho
,
K. C.
Huang
, and
W. W.
Lin
,
PLoS One
7
,
e40999
(
2012
).
70.
Y.
Zhang
,
Y.
Tu
,
J.
Zhao
,
K.
Chen
, and
C.
Wu
,
J. Cell Biol.
184
,
785
(
2009
).
71.
M. P.
Agius
,
Kristin S.
Ko
,
Taylor K.
Johnson
,
Frank E.
Kwarcinski
,
Sameer
Phadke
,
Eric J.
Lachacz
, and
Matthew B.
Soellner
,
ACS Chem. Biol.
14
,
1556
(
2019
).
72.
P.
Lukes
,
E.
Dolezalova
,
I.
Sisrova
, and
M.
Clupek
,
Plasma Sources Sci. Technol.
23
,
015019
(
2014
).
73.
Y.
Perez-Riverol
et al,
Nucleic Acids Res.
50
,
D543
(
2022
).
You do not currently have access to this content.