Liquid-infused polymers are recognized for their ability to repel foulants, making them promising for biomedical applications including catheter-associated urinary tract infections (CAUTIs). However, the impact of the quantity of free liquid layer covering the surface on protein and bacterial adhesion is not well understood. Here, we explore how the amount of free silicone liquid layer in infused silicone catheter materials influences the adhesion of bacteria and proteins relevant to CAUTIs. To alter the quantity of the free liquid layer, we either physically removed excess liquid from fully infused catheter materials or partially infused them. We then evaluated the impact on bacterial and host protein adhesion. Physical removal of the free liquid layer from the fully infused samples reduced the height of the liquid layer from 60 μm to below detection limits and silicone liquid loss into the environment by approximately 64% compared to controls, without significantly increasing the deposition of protein fibrinogen or the adhesion of the common uropathogen Enterococcus faecalis. Partially infused samples showed even greater reductions in liquid loss: samples infused to 70%–80% of their maximum capacity exhibited about an 85% decrease in liquid loss compared to fully infused controls. Notably, samples with more than 70% infusion did not show significant increases in fibrinogen or E. faecalis adhesion. These findings suggest that adjusting the levels of the free liquid layer in infused polymers can influence protein and bacterial adhesion on their surfaces. Moreover, removing the free liquid layer can effectively reduce liquid loss from these polymers while maintaining their functionality.

1.
2.
A. L.
Flores-Mireles
,
J. S.
Pinkner
,
M. G.
Caparon
, and
S. J.
Hultgren
,
Sci. Transl. Med.
6
,
254ra127
(
2014
).
3.
A. L.
Flores-Mireles
et al,
J. Urol.
196
,
416
(
2016
).
4.
C.
Howell
,
A.
Grinthal
,
S.
Sunny
,
M.
Aizenberg
, and
J.
Aizenberg
,
Adv. Mater.
30
,
1802724
(
2018
).
5.
U.
Manna
et al,
Adv. Funct. Mater.
26
,
3599
(
2016
).
6.
A. K.
Epstein
,
T.-S.
Wong
,
R. A.
Belisle
,
E. M.
Boggs
, and
J.
Aizenberg
,
Proc. Natl. Acad. Sci. U. S. A.
109
,
13182
(
2012
).
7.
J.
Li
et al,
ACS Appl. Mater. Interfaces
5
,
6704
(
2013
).
8.
Y.
Kovalenko
et al,
Adv. Healthcare Mater.
6
,
1600948
(
2017
).
9.
H. F.
Bohn
and
W.
Federle
,
Proc. Natl. Acad. Sci. U. S. A.
101
,
14138
(
2004
).
10.
D. P.
Regan
and
C.
Howell
,
Curr. Opin. Colloid Interface Sci.
39
,
137
(
2019
).
11.
S.
Peppou-Chapman
,
J. K.
Hong
,
A.
Waterhouse
, and
C.
Neto
,
Chem. Soc. Rev.
49
,
3688
(
2020
).
12.
Z.
Applebee
and
C.
Howell
,
Ind. Chem. Mater.
(published online) (2024).
13.
M.
Villegas
,
Y.
Zhang
,
N.
Abu Jarad
,
L.
Soleymani
, and
T. F.
Didar
,
ACS Nano
13
,
8517
(
2019
).
14.
N.
MacCallum
et al,
ACS Biomater. Sci. Eng.
1
,
43
(
2015
).
15.
C.
Villanueva
,
S. G. M.
Hossain
, and
C. A.
Nelson
,
J. Endourol.
25
,
841
(
2011
).
16.
M. J.
Andersen
and
A. L.
Flores-Mireles
,
Coatings
10
,
23
(
2019
).
17.
V. P.
O’Brien
,
T. J.
Hannan
,
H. V.
Nielsen
, and
S. J.
Hultgren
,
Microbiol. Spectrum
4
,
4.1.07
(
2016
).
18.
C. V.
Gould
,
C. A.
Umscheid
,
R. K.
Agarwal
,
G.
Kuntz
, and
D. A.
Pegues
, “Guideline for prevention of catheter-associated urinary tract infections 2009”
Infect Control Hosp Epidemiol.
31
(4), 319–326 (
2019
).
19.
C.
Howell
et al,
ACS Appl. Mater. Interfaces
6
,
13299
(
2014
).
20.
M. J.
Kratochvil
et al,
ACS Infect. Dis.
2
,
509
(
2016
).
21.
E.
Ozkan
et al,
J. Colloid Interface Sci.
608
,
1015
(
2022
).
22.
S.
Sunny
et al,
Proc. Natl. Acad. Sci. U. S. A.
113
,
11676
(
2016
).
23.
H.-H.
Tran
,
D.
Lee
, and
D.
Riassetto
,
Rep. Prog. Phys.
86
,
066601
(
2023
).
24.
G. B.
Melo
et al,
Prog. Retinal Eye Res.
80
,
100862
(
2021
).
25.
E.
Krayukhina
et al,
J. Pharm. Sci.
108
,
2278
(
2019
).
26.
C. F.
Chisholm
et al,
J. Pharm. Sci.
104
,
3681
(
2015
).
27.
D. A.
Armbruster
and
T.
Pry
,
Clin. Biochem. Rev.
29
,
S49
(
2008
).
28.
C.
Colomer-Winter
,
J.
Lemos
, and
A.
Flores-Mireles
,
Bio-Protoc.
9
,
e3196
(
2019
).
29.
I.
Sotiri
,
J. C.
Overton
,
A.
Waterhouse
, and
C.
Howell
,
Exp. Biol. Med.
241
,
909
(
2016
).
30.
N.
Lavielle
,
D.
Asker
, and
B. D.
Hatton
,
Soft Matter
17
,
936
(
2021
).
31.
Z.
Cai
,
A.
Skabeev
,
S.
Morozova
, and
J. T.
Pham
,
Commun. Mater.
2
,
21
(
2021
).
32.
Z.
Cai
and
J. T.
Pham
,
ACS Appl. Polym. Mater.
4
,
3013
(
2022
).
33.
G. W.
Scherer
,
J. Non-Cryst. Solids
108
,
18
(
1989
).
34.
D. P.
Regan
et al,
Biointerphases
14
,
041005
(
2019
).
39.
I.
Sotiri
et al,
Biointerphases
13
,
06D401
(
2018
).
40.
C. E.
Colosqui
,
J. S.
Wexler
,
Y.
Liu
, and
H. A.
Stone
,
Phys. Rev. Fluids
1
,
064101
(
2016
).
41.
L.
Schermelleh
,
R.
Heintzmann
, and
H.
Leonhardt
,
J. Cell Biol.
190
,
165
(
2010
).
43.
Y.
Shen
,
Y.
Sun
,
P.
Wang
, and
D.
Zhang
,
J. Ind. Eng. Chem.
124
,
532
(
2023
).
44.
H.
Straub
et al,
Adv. Healthcare Mater.
8
,
1801323
(
2019
).
46.
M. A.
Rezvova
,
K. Y.
Klyshnikov
,
A. A.
Gritskevich
, and
E. A.
Ovcharenko
,
Int. J. Mol. Sci.
24
,
3963
(
2023
).
47.
W.
Peters
and
V.
Fornasier
,
Can. J. Plast. Surg.
17
,
89
(
2009
).
48.
H.
Ghanbari
et al,
Int. J. Retina Vitreous
7
,
76
(
2021
).
49.
A. L.
Flores-Mireles
et al,
mBio
7
,
e01653-16
(
2016
).
50.
D.
Chinemerem Nwobodo
et al,
Clin. Lab. Anal.
36
,
e24655
(
2022
).
52.
G. B.
Melo
et al,
Int. J. Retina Vitreous
5
,
1
(
2019
).
54.
S.
Peppou-Chapman
and
C.
Neto
,
Langmuir
37
,
3025
(
2021
).
55.
T.
Nongnual
,
S.
Kaewpirom
,
N.
Damnong
,
S.
Srimongkol
, and
T.
Benjalersyarnon
,
ACS Omega
7
,
13178
(
2022
).
56.
K. L.
Marchin
and
C. L.
Berrie
,
Langmuir
19
,
9883
(
2003
).
57.
D.
van den Berg
,
D.
Asker
,
T. S.
Awad
,
N.
Lavielle
, and
B. D.
Hatton
,
Sci. Rep.
13
,
7691
(
2023
).
58.
59.
S.-Y.
Jung
et al,
J. Am. Chem. Soc.
125
,
12782
(
2003
).
60.
K.
Hyltegren
,
M.
Hulander
,
M.
Andersson
, and
M.
Skepö
,
Biomolecules
10
,
413
(
2020
).
61.
Y.
Lin
,
J.
Wang
,
L.-J.
Wan
, and
X.-H.
Fang
,
Ultramicroscopy
105
,
129
(
2005
).
62.
K.
Kubiak
,
Z.
Adamczyk
, and
M.
Wasilewska
,
J. Colloid Interface Sci.
457
,
378
(
2015
).
You do not currently have access to this content.