Titanium (Ti) is widely utilized as an implant material; nonetheless, its integration with bone tissue faces limitations due to a patient’s comorbidities. To address this challenge, we employed a strategic approach involving the growth of thin films by spin-coating and surface functionalization with etidronate (ETI), alendronate (ALE), and risedronate (RIS). Our methodology involved coating of Ti cp IV disks with thin films of TiO2, hydroxyapatite (HA), and their combinations (1:1 and 1:2 v/v), followed by surface functionalization with ETI, ALE, and RIS. Bisphosphonate-doped films were evaluated in terms of surface morphology and physical-chemical properties by techniques such as electron microscopy, confocal microscopy, and x-ray photoelectron spectroscopy. The antibacterial potential of bisphosphonates alone or functionalized onto the Ti surface was tested against Staphylococcus aureus biofilms. Primary human bone mesenchymal stem cells were used to determine in vitro cell metabolism and mineralization. Although RIS alone did not demonstrate any antibacterial effect as verified by minimum inhibitory concentration assay, when Ti surfaces were functionalized with RIS, partial inhibition of Staphylococcus aureus growth was noted, probably because of the physical-chemical surface properties. Furthermore, samples comprising TiO2/HA (1:1 and 1:2 v/v) showcased an enhancement in the metabolism of nondifferentiated cells and can potentially enhance the differentiation of osteoblastic precursors. All samples demonstrated cell viability higher than 80%. Addition of hydroxyapatite and presence of bisphosphonates increase the metabolic activity and the mineralization of human bone mesenchymal cells. While these findings hold promise, it is necessary to conduct further studies to evaluate the system’s performance in vivo and ensure its long-term safety. This research marks a significant stride toward optimizing the efficacy of titanium implants through tailored surface modifications.

1.
R. C.
Costa
et al,
Adv. Colloid Interface Sci.
298
,
102551
(
2021
).
2.
X.
Liu
,
P. K.
Chu
, and
C.
Ding
,
Mater. Sci. Eng. R
47
,
49
(
2004
).
3.
T.
Beline
,
J. H. D.
da Silva
,
A. O.
Matos
,
N. F.
Azevedo Neto
,
A. B.
de Almeida
,
F. H.
Nociti Júnior
,
D. M. G.
Leite
,
E. C.
Rangel
, and
V. A. R.
Barão
,
Mater. Sci. Eng. C
101
,
111
(
2019
).
4.
Y.
Cui
,
T.
Zhu
,
D.
Li
,
Z.
Li
,
Y.
Leng
,
X.
Ji
,
H.
Liu
,
D.
Wu
, and
J.
Ding
,
Adv. Healthcare Mater.
8
,
1901073
(
2019
).
5.
J.
Abtahi
,
P.
Tengvall
, and
P.
Aspenberg
,
Bone
50
,
1148
(
2012
).
6.
M.
Diba
et al,
Adv. Funct. Mater.
27
,
1703438
(
2017
).
7.
P.
Pascaud
,
P.
Gras
,
Y.
Coppel
,
C.
Rey
, and
S.
Sarda
,
Langmuir
29
,
2224
(
2013
).
8.
L.
Forte
et al,
ACS Biomater. Sci. Eng.
5
,
3429
(
2019
).
9.
E. S.
Bronze-Uhle
,
L. F. G.
Dias
,
L. D.
Trino
,
A. A.
Matos
,
R. C.
de Oliveira
, and
P. N.
Lisboa-Filho
,
Surf. Coat. Technol.
357
,
36
(
2019
).
10.
A.
Corrado
,
E. R.
Sanpaolo
, and
F. P.
Cantatore
,
J. Gerontol. Geriatr.
65
,
150
(
2017
).
11.
A. M. A.
Menezes
,
F. A. C.
Rocha
,
H. V.
Chaves
,
C. B. M.
Carvalho
,
R. A.
Ribeiro
, and
G. A. C.
Brito
,
J. Periodontol.
76
,
1901
(
2005
).
12.
A.
Bigi
and
E.
Boanini
,
J. Funct. Biomater.
9
,
6
(
2018
).
13.
M. J.
Rogers
,
J.
Mönkkönen
, and
M. A.
Munoz
,
Bone
139
,
115493
(
2020
).
14.
X.
Xu
,
N.
Wang
,
M.
Wu
,
J.
Wang
,
D.
Wang
,
Z.
Chen
,
J.
Xie
,
C.
Ding
, and
J.
Li
,
Colloids Surf. B
194
, 111206 (
2020
).
15.
Ž
Petrović
,
A.
Šarić
,
I.
Despotović
,
J.
Katić
,
R.
Peter
,
M.
Petravić
, and
M.
Petković
,
Materials
13
, 3220 (
2020
).
16.
S. M. S.
Reshamwala
,
C.
Mamidipally
,
R. R. S.
Pissurlenkar
,
E. C.
Coutinho
, and
S. B.
Noronha
,
J. Med. Microbiol.
65
,
9
(
2016
).
17.
C. G.
Park
,
M.
Park
,
B. H.
Kim
,
S. H.
Lee
,
J. Y.
Park
,
H. H.
Park
,
K.
Lee
,
H. K.
Seok
, and
Y.
Bin Choy
,
Macromol. Res.
25
,
756
(
2017
).
18.
W.
He
,
Y.
Zhang
,
J.
Li
,
Y.
Gao
,
F.
Luo
,
H.
Tan
,
K.
Wang
, and
Q.
Fu
,
Sci. Rep.
6
,
32140
(
2016
).
19.
X.
Wang
,
B.
Li
,
L.
Zhou
,
J.
Ma
,
X.
Zhang
,
H.
Li
,
C.
Liang
,
S.
Liu
, and
H.
Wang
,
Mater. Chem. Phys.
215
,
339
(
2018
).
20.
J. Y.
Han
,
Z. T.
Yu
, and
L.
Zhou
,
Appl. Surf. Sci.
255
,
455
(
2008
).
21.
L. F. G.
Dias
et al,
ChemistrySelect
7
, e202200286 (
2022
).
22.
L. F.
Gonçalves Dias
et al,
RSC Adv.
10
,
39854
(
2020
).
23.
L. F. G.
Dias
,
M. Y. K.
Nakata
,
G. J. C.
Pimentel
,
E. S.
Bronze-Uhle
,
V. R.
Mastelaro
, and
P. N.
Lisboa-Filho
,
Surf. Interfaces
39
,
102964
(
2023
).
24.
L. D.
Trino
,
E. S.
Bronze-Uhle
,
A.
George
,
M. T.
Mathew
, and
P. N.
Lisboa-Filho
,
Colloids Surf. A
546
,
168
(
2018
).
25.
B. A. E.
Ben-Arfa
,
I. M. M.
Salvado
,
J. M. F.
Ferreira
, and
R. C.
Pullar
,
Mater. Sci. Eng. C
70
,
796
(
2017
).
26.
K.
Borcherding
,
D.
Marx
,
L.
Gätjen
,
N.
Bormann
,
B.
Wildemann
,
U.
Specht
,
D.
Salz
,
K.
Thiel
, and
I.
Grunwald
,
Materials
12
,
3838
(
2019
).
27.
D. A.
Ossipov
,
Expert Opin. Drug Delivery
12
,
1443
(
2015
).
28.
R. G. G.
Russell
,
P. I.
Croucher
, and
M. J.
Rogers
,
Osteoporosis Int.
9
,
S66
(
1999
).
29.
M. T.
Drake
,
B. L.
Clarke
, and
S.
Khosla
,
Mayo Clin. Proc.
83
,
1032
(
2008
).
30.
C. R.
Arciola
,
D.
Campoccia
, and
L.
Montanaro
,
Nat. Rev. Microbiol.
16
,
397
(
2018
).
31.
S.
Hashemi Astaneh
,
H.
Bhatia
,
B. E.
Nagay
,
V. A. R.
Barão
,
G.
Jursich
,
C.
Sukotjo
, and
C. G.
Takoudis
,
Appl. Surf. Sci.
591
,
153195
(
2022
).
32.
R. C.
Costa
et al,
J. Colloid Interface Sci.
579
,
680
(
2020
).
33.
E. D.
de Avila
,
A. G. B.
Castro
,
O.
Tagit
,
B. P.
Krom
,
D.
Löwik
,
A. A.
van Well
,
L. J.
Bannenberg
, and
C. E.
Vergani
,
Surf. Sci.
488
,
194
(
2019
).
34.
B. D.
Alexander
, and
Clinical and Laboratory Standards Institute
, Reference Method for Broth Dilution Antifungal Susceptibility Testing of Yeasts.
35.
S.
Kranz
et al,
Materials
12
, 866 (
2019
).
36.
J. M.
Cordeiro
,
B. E.
Nagay
,
C.
Dini
,
J. G. S.
Souza
,
E. C.
Rangel
,
N. C.
da Cruz
,
F.
Yang
,
J. J. J. P.
van den Beucken
, and
V. A. R.
Barão
,
Biomater. Adv.
134, 112550 (
2022
).
37.
M. H. R.
Borges
et al,
Mater. Today Chem.
26
, 101095 (
2022
).
38.
E.
Mohseni
,
E.
Zalnezhad
, and
A. R.
Bushroa
,
Int. J. Adhes. Adhes.
48
,
238
(
2014
).
39.
C.
Chen
,
M.
Xia
,
L.
Wu
,
C.
Zhou
, and
F.
Wang
,
J. Mol. Model.
18
,
4007
(
2012
).
40.
C.
Theile-Rasche
,
M.
Wiesing
,
S.
Schwiderek
,
M.
Noeske
, and
G.
Grundmeier
,
Appl. Surf. Sci.
513
,
145701
(
2020
).
41.
V.
Zoulalian
,
S.
Zürcher
,
S.
Tosatti
,
M.
Textor
,
S.
Monge
, and
J. J.
Robin
,
Langmuir
26
,
74
(
2010
).
42.
43.
L. F. G.
Dias
, “Immobilization of bisphosphonates on nanostructured films of TiO2 and hydroxyapatite,” Ph.D. dissertation (
São Paulo State University
,
2022
).
44.
A.
Henningsen
,
R.
Smeets
,
R.
Heuberger
,
O. T.
Jung
,
H.
Hanken
,
M.
Heiland
,
C.
Cacaci
, and
C.
Precht
,
Eur. J. Oral Sci.
126
,
126
(
2018
).
You do not currently have access to this content.