This paper introduces a physical neuron model that incorporates magnetoelectric nanoparticles (MENPs) as an essential electrical circuit component to wirelessly control local neural activity. Availability of such a model is important as MENPs, due to their magnetoelectric effect, can wirelessly and noninvasively modulate neural activity, which, in turn, has implications for both finding cures for neurological diseases and creating a wireless noninvasive high-resolution brain-machine interface. When placed on a neuronal membrane, MENPs act as magnetic-field-controlled finite-size electric dipoles that generate local electric fields across the membrane in response to magnetic fields, thus allowing to controllably activate local ion channels and locally initiate an action potential. Herein, the neuronal electrical characteristic description is based on ion channel activation and inhibition mechanisms. A MENP-based memristive Hodgkin–Huxley circuit model is extracted by combining the Hodgkin–Huxley model and an equivalent circuit model for a single MENP. In this model, each MENP becomes an integral part of the neuron, thus enabling wireless local control of the neuron’s electric circuit itself. Furthermore, the model is expanded to include multiple MENPs to describe collective effects in neural systems.

1.
S.
Khizroev
and
P.
Liang
,
IEEE Nanotechnol. Mag.
14
,
23
(
2019
).
3.
M.
Shotbolt
et al,
Cancer Res.
84
, 490 (
2024
).
4.
S.
Chen
et al,
IEEE Trans. Magn.
59
,
5100804
(
2023
).
6.
P.
Wang
et al,
J. Magn. Magn. Mater.
516
, 167329 (
2020
).
7.
J. V.
Raimondo
et al,
Front. Cellular Neurosci.
9
, 419 (
2015
).
8.
C.
Bédard
and
A.
Destexhe
,
Biophys. J.
94
,
1133
(
2008
).
10.
Y.
Yarom
and
J.
Hounsgaard
,
Physiol. Rev.
91
,
917
(
2011
).
11.
C.
Gold
et al,
J. Neurophysiol.
95
,
3113
(
2006
).
13.
A.
Marrella
et al,
Front. Bioeng. Biotechnol.
11
, 1219777 (
2023
).
14.
S.
Fiocchi
et al,
J. Neural Eng.
19
,
056020
(
2022
).
17.
P. L.
Elric Zhang
,
Yagmur Akin
Yildirim
,
Shawnus
Chen
,
Mostafa
Abdel-Mottaleb
,
Max
Shotbolt
,
Zeinab
Ramezani
,
Jieyuan
Tian
,
Victoria
Andre
, and
Sakhrat
Khizroev
,
IEEE Trans. Magn.
59
,
5000205
(
2023
).
18.
R.
Grech
et al,
J. Neuroeng. Rehabil.
5
,
1
(
2008
).
19.
A.
Bruce
,
Molecular Biology of the Cell
(
Garland
, New York,
1983
).
20.
B.
Hille
,
Ion Channels of Excitable Membranes
, 3rd ed. (Sinauer, Sunderland, MA,
2001
).
21.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol.
117
,
500
(
1952
).
22.
E.
Neher
and
B.
Sakmann
,
Nature
260
,
799
(
1976
).
23.
24.
S.
Ramaswamy
,
Curr. Opin. Neurobiol.
85
,
102842
(
2024
).
26.
M.
Hawrylycz
et al,
Proc. Natl. Acad. Sci. U.S.A.
113
,
7337
(
2016
).
27.
C. G.
Alexandersen
et al,
J. R. Soc. Interface
20
,
20220607
(
2023
).
29.
I. T.
Smith
et al,
Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol.
15, e1849 (
2022
).
30.
31.
T.
Stewart
et al,
Cancer Res.
76
, 1346 (
2016
).
32.
A.
Rodzinski
et al,
Sci. Rep.
6
, 20867 (
2016
).
33.
D.
Purves
et al, “
Circuits within the basal ganglia system
,” in
Neuroscience
, 2nd ed. (
Sinauer Associates
, Sunderland, MA,
2001
).
34.
B.
Hille
,
Ion Channels of Excitable Membranes
(
Sinauer Associates Inc.
,
Sunderland, MA
,
2001
), p.
813
.
35.
I. B.
Levitan
and
L. K.
Kaczmarek
,
The Neuron: Cell and Molecular Biology
(
Oxford University
,
Cary, NC
,
2002
).
36.
Z. I.
Mannan
et al,
IEEE Trans. Neural Netw. Learn. Syst.
30
,
3458
(
2019
).
37.
M. L.
Hines
and
N. T.
Carnevale
,
J. Neurosci. Methods
169
,
425
(
2008
).
38.
A. L.
Hodgkin
and
A. F.
Huxley
,
J. Physiol.
116
,
449
(
1952
).
40.
A. M.
Hegab
et al,
Int. J. Bifurc. Chaos
25
,
1530017
(
2015
).
41.
L.
Chua
,
V.
Sbitnev
, and
H.
Kim
,
Int. J. Bifurc. Chaos
22
,
1230011
(
2012
).
42.
L.
Chua
,
Semicond. Sci. Technol.
29
,
104001
(
2014
).
43.
Z.
Ramezani
and
A.
Ahmadivand
, “
Fundamental phenomena in nanoscale semiconductor devices
,” in
Sub-Micron Semiconductor Devices
(
CRC
, Boca Raton, FL,
2022
), pp.
1
22
.
44.
W.
Xu
,
J.
Wang
, and
X.
Yan
,
Front. Nanotechnol.
3
,
645995
(
2021
).
45.
L.
Chua
,
IEEE Trans. Circ. Theory
18
,
507
(
1971
).
46.
L. O.
Chua
and
S. M.
Kang
,
Proc. IEEE
64
,
209
(
1976
).
48.
E. M.
Izhikevich
,
Dynamical Systems in Neuroscience
(
MIT
, Cambridge, MA,
2007
).
49.
A.
Pikovsky
et al,
Self
2
,
3
(
2001
).
50.
K. L.
Kozielski
et al,
Sci. Adv.
7
,
eabc4189
(
2021
).
51.
E.
Stimphil
et al,
Appl. Phys. Rev.
4
, 021101 (
2017
).
52.
M.
Tallawi
et al,
J. R. Soc. Interface
12
,
20150254
(
2015
).
53.
S.
Liebana
and
Guido A.
Drago
,
Essays Biochem.
60
,
59
(
2016
).
54.
J.
Goossens
et al,
Anal. Methods
9
,
3430
(
2017
).
55.
M. A.
Parracino
,
B.
Martín
, and
V.
Grazú
, “
State-of-the-art strategies for the biofunctionalization of photoactive inorganic nanoparticles for nanomedicine
,” in
Photoactive Inorganic Nanoparticles
, (
Elsevier
, Amsterdam,
2019
), pp.
211
257
.
56.
M. R.
Gordon
et al,
Bioconjugate Chem.
26
,
2198
(
2015
).
59.
B. V.
Hille
, “
The ionic channels in excitable membranes,” in Proceedings of the Ciba Foundation Symposium 31–Energy Transformation in Biological Systems (Associated Scientific Publishers, Amsterdam, 1975)
.
60.
R. R.
Llinás
,
M.
Sugimori
, and
B.
Cherksey
,
Ann. N. Y. Acad. Sci.
560
,
103
(
1989
).
61.
S. F.
Traynelis
et al,
Pharmacol. Rev.
62
,
405
(
2010
).
62.
R. W.
Olsen
and
W.
Sieghart
,
Pharmacol. Rev.
60
,
243
(
2008
).
63.
B.
Nilius
and
A.
Szallasi
,
Pharmacol. Rev.
66
,
676
(
2014
).
64.
J.-X.
Pan
et al, in
Growth Curve Models and Statistical Diagnostics
(Springer, New York,
2002
), p. 77.
65.
G. E.
Box
and
G. C.
Tiao
,
Bayesian Inference in Statistical Analysis
(
John Wiley & Sons
, Hoboken, NJ,
2011
).
66.
R.
Chen
et al,
Nat. Biotechnol.
39
, 161–164 (
2021
).
You do not currently have access to this content.