SU-8 is an epoxy-based, biocompatible thermosetting polymer, which has been utilized mainly to fabricate biomedical devices and scaffolds. In this study, thin, single-layered, freestanding tuneable porous SU-8 membranes were microfabricated and surface hydrophilized for efficient bioseparation. Unlike the previous thicker membranes of 200–300 μm, these thin SU-8 membranes of 50–60 μm thickness and pores with 6–10 μm diameter were fabricated and tested for blood-plasma separation, without any additional support structure. The method is based on making a patterned SU-8 layer by electrospin coating and UV lithography on a sacrificial polyethylene terephthalate (PET) sheet attached to a silicon wafer. Poor adhesion between PET and SU-8 aid in the convenient release of the thin porous membranes with uniform pore formation. The single-layered self-supporting membranes were strong, safe, sterilizable, reusable, and suitable for plasma separation and postfermentation broth enrichment.

1.
K. V.
Nemani
,
K. L.
Moodie
,
J. B.
Brennick
,
A.
Su
, and
B.
Gimi
,
Mater. Sci. Eng. C
33
,
4453
(
2013
).
3.
Z.
Chen
and
J. B.
Lee
,
Micromachines
12
,
794
(
2021
).
4.
M.
Ebrahimi Warkiani
,
C. P.
Lou
, and
H. Q.
Gong
,
Biomicrofluidics
5
,
036504
(
2011
).
5.
N.
Noeth
,
S. S.
Keller
, and
A.
Boisen
,
Sensors
14
,
229
(
2013
).
6.
A.
Sobiesierski
,
R.
Thomas
,
P.
Buckle
,
D.
Barrow
, and
P. M.
Smowton
,
Surf. Interface Anal.
47
,
1174
(
2015
).
7.
M.
Nordström
,
R.
Marie
,
M.
Calleja
, and
A.
Boisen
,
J. Micromech. Microeng.
14
,
1614
(
2004
).
8.
A.
Delplanque
,
E.
Henry
,
J.
Lautru
,
H.
Leh
,
M.
Buckle
, and
C.
Nogues
,
Appl. Surf. Sci.
314
,
280
(
2014
).
9.
E. S.
Ereifej
,
S.
Khan
,
G.
Newaz
,
J.
Zhang
,
G. W.
Auner
, and
P. J.
Vandevord
,
J. Biomed. Mater. Res., Part A
99A
,
141
(
2011
).
10.
E.
Balciunas
,
L.
Jonusauskas
,
V.
Valuckas
,
D.
Baltriukiene
,
V.
Bukelskiene
,
R.
Gadonas
, and
M.
Malinauskas
,
Proc. SPIE
8427
,
381
(
2012
).
11.
G.
Kotzar
,
M.
Freas
,
P.
Abel
,
A.
Fleischman
,
S.
Roy
,
C.
Zorman
,
J. M.
Moran
, and
J.
Melzak
,
Biomaterials
23
,
2737
(
2002
).
12.
M. B.
Esch
,
J. H.
Sung
,
J.
Yang
,
C.
Yu
,
J.
Yu
,
J. C.
March
, and
M. L.
Shuler
,
Biomed. Microdevices
14
,
895
(
2012
).
13.
V.
VanDelinder
and
A.
Groisman
,
Anal. Chem.
78
,
3765
(
2006
).
14.
J. M.
Li
,
C.
Liu
,
X. D.
Dai
,
H. H.
Chen
,
Y.
Liang
,
H. L.
Sun
,
H.
Tian
, and
X. P.
Ding
,
J. Micromech. Microeng.
18
,
095021
(
2008
).
15.
P.
Abgrall
,
C.
Lattes
,
V.
Conédéra
,
X.
Dollat
,
S.
Colin
, and
A. M.
Gué
,
J. Micromech. Microeng.
16
,
113
(
2005
).
16.
Y.
Wang
,
B. B.
Nunna
,
N.
Talukder
,
E. E.
Etienne
, and
E. S.
Lee
,
Bioengineering
8
,
94
(
2021
).
17.
H. M.
Ji
,
V.
Samper
,
Y.
Chen
,
C. K.
Heng
,
T. M.
Lim
, and
L.
Yobas
,
Biomed. Microdevices
10
,
251
(
2008
).
18.
K.
Kim
,
D. S.
Park
,
H. M.
Lu
,
W.
Che
,
K.
Kim
,
J. B.
Lee
, and
C. H.
Ahn
,
J. Micromech. Microeng.
14
,
597
(
2004
).
19.
V. V.
Nagaiyanallur
,
D.
Kumar
,
A.
Rossi
,
S.
Zuürcher
, and
N. D.
Spencer
,
Langmuir
30
,
10107
(
2014
).
20.
G.
Blagoi
,
S.
Keller
,
A.
Johansson
,
A.
Boisen
, and
M.
Dufva
,
Appl. Surf. Sci.
255
,
2896
(
2008
).
You do not currently have access to this content.