The purpose of this experimental and modeling research is to study the pH effect and to determine the surface coverage plus the adsorption constant (Ka) of bovine serum albumin (BSA) protein adsorbed on TiO2 anatase surface, respectively. In situ Fourier transform infrared-attenuated total reflection spectroscopy in a flow-through cell was used to study the BSA adsorption on porous TiO2 anatase films. The experiments were performed in water solution, under different pH values, at a concentration of 10−6 mol/l. Theoretically, we extended the two-state model, based on a system of coupled differential equations, by adding a desorption parameter K d 2, for unfolded state. The model was solved taking into account the adsorption (Ka), desorption ( K d 1 , 2 ), transformation (Kf) coefficients, and the initial solution protein concentration (C0). The findings clearly illustrated that the solution pH drastically changed the behavior of BSA adsorption, whereas the mathematical analytical solutions allowed us to determine the native state ( θ 1 ), the unfolded state ( θ 2 ), and the full one ( θ ) surface coverages. Finally, a good application of the approximated model on the experimental work, expanded BSA adsorbed on TiO2 anatase at pH = 1.7, indicated a value of Ka = (408.36 ± 0.996) × 102 mol−1 l min−1.

1.
R. A.
Latour
,
Colloids Surf., B
191
,
110992
(
2020
).
2.
J.-Y.
Yoon
,
J.-H.
Kim
, and
W.-S.
Kim
,
Colloids Surf., B
12
,
15
(
1998
).
3.
A.
Bratek-Skicki
,
P.
Żeliszewska
, and
Z.
Adamczyk
,
Colloids Surf., B
103
,
482
(
2013
).
4.
C. J.
Nonckreman
,
S.
Fleith
,
P. G.
Rouxhet
, and
C. C.
Dupont-Gillain
,
Colloids Surf., B
77
,
139
(
2010
).
5.
I.
Lundström
, in
Surfactants, Adsorption, Surface Spectroscopy and Disperse Systems
, edited by
B.
Lindman
,
G.
Olofsson
, and
P.
Stenius
(
Steinkopff
,
Darmstadt
,
1985
), pp.
76
82
.
6.
S.
Gon
and
M. M.
Santore
,
Langmuir
27
,
15083
(
2011
).
7.
C. T.
Mallon
,
C.
De Chaumont
,
N.
Moran
,
T. E.
Keyes
, and
R. J.
Forster
, “Electrochemical desorption of fibrinogen from gold,”
Langmuir
26
(1), 293 (
2010
).
8.
Y.
Yu
and
G.
Jin
,
J. Colloid Interface Sci.
283
,
477
(
2005
).
9.
K. E.
Michael
,
V. N.
Vernekar
,
B. G.
Keselowsky
,
J. C.
Meredith
,
R. A.
Latour
, and
A. J.
García
,
Langmuir
19
,
8033
(
2003
).
10.
Y.
Huang
,
J.
Zhang
, and
L.
Zhu
,
Bioresour. Technol.
134
,
17
(
2013
).
11.
R.
Tzoneva
,
N.
Faucheux
, and
T.
Groth
,
Biochim. Biophys. Acta, Gen. Subj.
1770
,
1538
(
2007
).
12.
R. T. T.
Gettens
and
J. L.
Gilbert
,
J. Biomed. Mater. Res., A
85
,
176
187
(
2008
).
13.
P. J.
Molino
,
M. J.
Higgins
,
P. C.
Innis
,
Robert. M.I.
Kapsa
, and
G. G.
Wallace
,
Langmuir
28
,
8433
(
2012
).
14.
S.
Pasche
,
J.
Vörös
,
H. J.
Griesser
,
N. D.
Spencer
, and
M.
Textor
,
J. Phys. Chem. B
109
,
17545
(
2005
).
16.
M.
Dargahi
,
E.
Konkov
, and
S.
Omanovic
,
Electrochim. Acta
174
,
1009
(
2015
).
17.
K. C.
Dee
,
D. A.
Puleo
, and
R.
Bizios
,
An Introduction to Tissue-Biomaterial Interactions
(
Wiley-Liss
,
Hoboken
,
NJ
,
2002
).
18.
A.
Bouhekka
and
T.
Bürgi
,
Acta Chim. Slov.
59
,
841
(
2012
).
19.
D.-H.
Tsai
,
F. W.
DelRio
,
A. M.
Keene
,
K. M.
Tyner
,
R. I.
MacCuspie
,
T. J.
Cho
,
M. R.
Zachariah
, and
V. A.
Hackley
,
Langmuir
27
,
2464
(
2011
).
20.
T. Peters
,
Jr.
,
All About Albumin: Biochemistry, Genetics, and Medical Applications
(
Academic
, Press,
New York
, 1995
), 432 pp.
21.
Z. G.
Peng
,
K.
Hidajat
, and
M. S.
Uddin
,
J. Colloid Interface Sci.
271
,
277
(
2004
).
22.
M.
Rabe
,
D.
Verdes
, and
S.
Seeger
,
Adv. Colloid Interface Sci.
162
,
87
(
2011
).
23.
V. M.
Rosenoer
,
M.
Oratz
, and
M. A.
Rothschild
,
Albumin: Structure, Function and Uses
(
Elsevier
,
New York
,
2014
).
24.
Y.
Brahmi
,
L.
Filali
,
J. D.
Sib
,
A.
Bouhekka
,
D.
Benlakehal
,
Y.
Bouizem
,
A.
Kebab
, and
L.
Chahed
,
Appl. Surf. Sci.
423
,
394
(
2017
).
25.
W. F.
Harrington
,
P.
Johnson
, and
R. H.
Ottewill
,
Biochem. J.
62
,
569
(
1956
).
26.
D. C.
Carter
and
J. X.
Ho
,
Adv. Protein Chem.
45
,
153
203
(
1994
).
27.
S. J.
Hug
and
B.
Sulzberger
,
Langmuir
10
,
3587
(
1994
).
28.
A.
Urakawa
,
R.
Wirz
,
T.
Bürgi
, and
A.
Baiker
,
J. Phys. Chem. B
107
,
13061
(
2003
).
29.
T.
Bürgi
,
R.
Wirz
, and
A.
Baiker
,
J. Phys. Chem. B
107
,
6774
(
2003
).
30.
T.
Bürgi
and
A.
Baiker
,
Adv. Catal.
50
,
227
(
2006
).
31.
B. E.
Givens
,
N. D.
Diklich
,
J.
Fiegel
, and
V. H.
Grassian
,
Biointerphases
12
,
02D404
(
2017
).
32.
A.
Bouhekka
and
T.
Bürgi
,
Appl. Surf. Sci.
261
,
369
(
2012
).
33.
M. E.
Lienqueo
,
A.
Mahn
,
J. C.
Salgado
, and
J. A.
Asenjo
,
J. Chromatogr. B
849
,
53
(
2007
).
34.
F.
Xia
,
D.
Nagrath
, and
S. M.
Cramer
,
J. Chromatogr., A
1079
,
229
(
2005
).
35.
F. Y.
Oliva
,
L. B.
Avalle
,
O. R.
Cámara
, and
C. P.
De Pauli
,
J. Colloid Interface Sci.
261
,
299
(
2003
).
36.
R.
Huber
and
S.
Stoll
,
Colloids Surf., A
553
,
425
(
2018
).
38.
J.
Zhou
,
M.
Wang
,
B.
Zhang
, and
Q.
Zhang
,
Colloids Surf., A
612
,
125981
(
2021
).
39.
M.
Dargahi
and
S.
Omanovic
,
Colloids Surf., B
116
,
383
(
2014
).
40.
M.
Dargahi
,
A. L. J.
Olsson
,
N.
Tufenkji
, and
R.
Gaudreault
,
Corrosion
71
,
1321
(
2015
).
41.
S. J.
McClellan
and
E. I.
Franses
,
Colloids Surf., A
260
,
265
(
2005
).
42.
D.
Vitasari
,
P.
Grassia
, and
P.
Martin
,
Colloids Surf., A
438
,
63
(
2013
).
You do not currently have access to this content.