Time-of-flight secondary ion mass spectrometry (TOF-SIMS) is a quasi-non-destructive technique capable of analyzing the outer monolayers of a solid sample and detecting all elements of the periodic table and their isotopes. Its ability to analyze the outer monolayers resides in sputtering the sample surface with a low-dose primary ion gun, which, in turn, imposes the use of a detector capable of counting a single ion at a time. Consequently, the detector saturates when more than one ion arrives at the same time hindering the use of TOF-SIMS for quantification purposes such as isotope ratio estimation. Even though a simple Poisson-based correction is usually implemented in TOF-SIMS acquisition software to compensate the detector saturation effects, this correction is only valid up to a certain extent and can be unnoticed by the inexperienced user. This tutorial describes a methodology based on different practices reported in the literature for dealing with the detector saturation effects and assessing the validity limits of Poisson-based correction when attempting to use TOF-SIMS data for quantification purposes. As a practical example, a dried lithium hydroxide solution was analyzed by TOF-SIMS with the aim of estimating the 6Li/7Li isotope ratio. The approach presented here can be used by new TOF-SIMS users on their own data for understanding the effects of detector saturation, determine the validity limits of Poisson-based correction, and take into account important considerations when treating the data for quantification purposes.

1.
P.
van der Heide
,
Secondary Ion Mass Spectrometry: An Introduction to Principles and Practices
(
Wiley
,
Hoboken
,
NJ
,
2014
).
2.
F. A.
Stevie
,
Secondary Ion Mass Spectrometry: Applications for Depth Profiling and Surface Characterization
(
Momentum, LLC
,
New York
,
2016
).
3.
D. J.
Graham
and
L. J.
Gamble
,
Biointerphases
18
,
021201
(
2023
).
4.
J. C.
Vickerman
and
D.
Briggs
, (Eds.)
TOF-SIMS: Materials Analysis by Mass Spectrometry
(IM Publications LLP, Chichester and SurfaceSpectra, Manchester,
2013
).
5.
A.
Benninghoven
,
Angew. Chem., Int. Ed. Engl.
33
,
1023
(
1994
).
6.
T.
Stephan
,
J.
Zehnpfenning
, and
A.
Benninghoven
,
J. Vac. Sci. Technol. A
12
,
405
(
1994
).
7.
J. L. S.
Lee
,
I. S.
Gilmore
, and
M. P.
Seah
,
Surf. Interface Anal.
44
,
1
(
2012
).
8.
S.-L.
Badea
,
V.-C.
Niculescu
, and
A.-M.
Iordache
,
Materials
16
,
3817
(
2023
).
9.
C.
Schwab
,
A.
Höweling
,
A.
Windmüller
,
J.
Gonzalez-Julian
,
S.
Möller
,
J. R.
Binder
,
S.
Uhlenbruck
,
O.
Guillon
, and
M.
Martin
,
Phys. Chem. Chem. Phys.
21
,
26066
(
2019
).
11.
D. J.
Graham
and
L. J.
Gamble
,
Biointerphases
18
,
031201
(
2023
).
12.
B. J.
Tyler
and
R. E.
Peterson
,
Surf. Interface Anal.
45
,
475
(
2013
).
13.
L. D.
Gelb
,
L. A.
Bakhtiari
, and
A. V.
Walker
,
Surf. Interface Anal.
47
,
889
(
2015
).
14.
A. J.
Fahey
and
S.
Messenger
,
Int. J. Mass Spectrom.
208
,
227
(
2001
).
15.
R. A.
De Souza
,
J.
Zehnpfenning
,
M.
Martin
, and
J.
Maier
,
Solid State Ionics
176
,
1465
(
2005
).
16.
I. S.
Gilmore
and
M. P.
Seah
,
Int. J. Mass Spectrom.
202
,
217
(
2000
).
17.
M.
Berthault
,
A.
Buzlukov
,
L.
Dubois
,
P.-A.
Bayle
,
W.
Porcher
,
T.
Gutel
,
E.
De Vito
, and
M.
Bardet
,
Phys. Chem. Chem. Phys.
25
,
22145
(
2023
).
You do not currently have access to this content.