Cold atmospheric pressure plasma jet (CAPJ) has piqued the interest of researchers for various antimicrobial applications such as disinfection, wound decontamination, etc. In the current context, a deeper understanding of the correlation between CAPJ's intrinsic parameters, discharge characteristics, species composition, and antimicrobial activity is required for any successful application. This research evaluated the effect of intrinsic operational parameters such as voltage, frequency, gas flow rate, and operating gas on the reactive species composition of an in-house-developed CAPJ discharge along with the antimicrobial activity. It was observed that the identified excited atoms (Ar I, He I, N2, and O I), ions (Ar+, N2+, N+, H2O+, H3O+, etc.), radical reactive oxygen and nitrogen species (RONS) (OH), and nonradical RONS (O I, O+, OH+, NO+, O2+, O2, NO2, N2O2, NO3, N2O3, etc.) might play a synergistic role in bacterial inactivation via oxidative and electrostatic stress. The variation in voltage, frequency, gas flow rate, and operating gas influenced the discharge chemistry, leading to variation in bacterial inactivation. The reactive species in the discharge responsible for such variation was evaluated extensively. This investigation into various operational parameters would aid in determining the most effective settings for a developed CAPJ to achieve high productivity.

1.
S.
Das
,
V. P.
Gajula
,
S.
Mohapatra
,
G.
Singh
, and
S.
Kar
,
Heal. Sci. Rev.
4
,
100037
(
2022
).
3.
D.
Braný
,
D.
Dvorská
,
E.
Halašová
, and
H.
Škovierová
,
Int. J. Mol. Sci.
21
,
2932
(
2020
).
4.
S.
Duarte
and
B. H. D.
Panariello
,
Arch. Biochem. Biophys.
693
,
108560
(
2020
).
5.
V.
Scholtz
,
E.
Vaňková
,
P.
Kašparová
,
R.
Premanath
,
I.
Karunasagar
, and
J.
Julák
,
Front. Microbiol.
12
,
737635
(
2021
).
6.
S.
Reuter
,
T.
von Woedtke
, and
K.-D.
Weltmann
,
J. Phys. D: Appl. Phys.
51
,
233001
(
2018
).
7.
Mahreen, P. Prasad, S. Kar, and J. Sahu, “
Atmospheric pressure non-thermal plasma in food processing
,” in
Food Processing: Advances in Nonthermal Technology
(CRC, Boca Raton, FL, 2021), pp. 223–251.
8.
T.
Von Woedtke
,
A.
Schmidt
,
S.
Bekeschus
,
K.
Wende
,
K.-D.
Weltmann
,
In Vivo
33
,
1011
(
2019
).
9.
N. M.
Marsit
,
L. E.
Sidney
,
M. J.
Branch
,
S. L.
Wilson
, and
A.
Hopkinson
,
Plasma Processes Polym.
14
,
1600134
(
2017
).
10.
N.
O’Connor
,
O.
Cahill
,
S.
Daniels
,
S.
Galvin
, and
H.
Humphreys
,
J. Hosp. Infect.
88
,
59
(
2014
).
11.
S. K.
Dubey
,
S.
Parab
,
A.
Alexander
,
M.
Agrawal
,
V. P. K.
Achalla
,
U. N.
Pal
,
M. M.
Pandey
, and
P.
Kesharwani
,
Process Biochem.
112
,
112
(
2022
).
12.
S.
Das
et al,
IEEE Trans. Radiat. Plasma Med. Sci.
7
,
421
(
2023
).
13.
A.
Mai-Prochnow
,
M.
Clauson
,
J.
Hong
, and
A. B.
Murphy
,
Sci. Rep.
6
,
38610
(
2016
).
14.
A.
Akbiyik
,
D.
Sari
,
U. K.
Ercan
,
Y.
Uyanikgil
,
H.
Taşli
,
C.
Tomruk
, and
Y. H.
Usta
,
J. Appl. Microbiol.
131
,
973
(
2021
).
15.
M.
Chatraie
,
G.
Torkaman
,
M.
Khani
,
H.
Salehi
, and
B.
Shokri
,
Sci. Rep.
8
,
5621
(
2018
).
16.
G.
Daeschlein
et al,
J. Hospital Infect.
81
,
177
(
2012
).
17.
F.
Judée
,
J.
Vaquero
,
S.
Guégan
,
L.
Fouassier
, and
T.
Dufour
,
J. Phys. D: Appl. Phys.
52
,
245201
(
2019
).
18.
S.
Lerouge
,
M. R.
Wertheimer
, and
L.
Yahia
,
Plasmas Polym.
6
,
175
(
2001
).
19.
X.
Liao
,
D.
Liu
,
Q.
Xiang
,
J.
Ahn
,
S.
Chen
,
X.
Ye
, and
T.
Ding
,
Food Control
75
,
83
(
2017
).
20.
P.
Bruggeman
and
R.
Brandenburg
,
J. Phys. D: Appl. Phys.
46
,
464001
(
2013
).
21.
P.
Bourke
,
D.
Ziuzina
,
L.
Han
,
P. J.
Cullen
, and
B. F.
Gilmore
,
J. Appl. Microbiol.
123
,
308
(
2017
).
22.
H.
Wang
,
L.
Zhang
,
H.
Luo
,
X.
Wang
,
J.
Tie
, and
Z.
Ren
,
Appl. Environ. Microbiol.
86
,
e01907
(
2019
).
23.
A.
Sakudo
and
T.
Misawa
,
Int. J. Mol. Sci.
21
,
6326
(
2020
).
24.
T.
Shimizu
,
V.
Lachner
, and
J. L.
Zimmermann
,
Plasma Med.
7
,
175
(
2017
).
25.
M.
Du
,
H.
Xu
,
Y.
Zhu
,
R.
Ma
, and
Z.
Jiao
,
AIP Adv.
10
,
025036
(
2020
).
26.
A.-A. H.
Mohamed
,
A. H.
Basher
,
J. Q. M.
Almarashi
, and
S. A.
Ouf
,
Appl. Sci.
11
,
3455
(
2021
).
27.
B. B.
Sahu
,
S. B.
Jin
, and
J. G.
Han
,
J. Anal. At. Spectrom.
32
,
782
(
2017
).
28.
R. P.
Gott
and
K. G.
Xu
,
IEEE Trans. Plasma Sci.
47
,
4988
(
2019
).
29.
M.
Suresh
,
V. S. S. K.
Kondeti
, and
P. J.
Bruggeman
,
J. Phys. D: Appl. Phys.
55
,
185201
(
2022
).
30.
G.
Veda Prakash
,
N.
Behera
,
K.
Patel
, and
A.
Kumar
,
AIP Adv.
11
,
085329
(
2021
).
31.
A.
Roy
,
A.
Banerjee
,
S. C.
Das
,
A.
Vaid
,
S.
Katiyal
, and
A.
Majumdar
,
Appl. Phys. A
128
,
866
(
2022
).
32.
D.
Joshi
,
G. V.
Prakash
,
S. Z.
Ahammad
,
S.
Kar
, and
T. R.
Sreekrishnan
,
Plasma Sci. Technol.
24
,
105501
(
2022
).
33.
Mahreen
,
G.
Veda Prakash
,
S.
Kar
,
D.
Sahu
, and
A.
Ganguli
,
J. Appl. Phys.
130
,
083301
(
2021
).
34.
Mahreen
,
G. V.
Prakash
,
S.
Kar
,
D.
Sahu
, and
A.
Ganguli
,
Contrib. Plasma Phys.
62
,
e202200007
(
2022
).
35.
T. P.
Radhika
and
S.
Kar
,
Sci. Rep.
13
,
10665
(
2023
).
36.
E.-J.
Kim
,
J.-E.
Hyun
,
Y.-H.
Kang
,
S.-J.
Baek
, and
C.-Y.
Hwang
,
Vet. Dermatol.
33
,
29
(
2022
).
37.
W.
Fu
,
C.
Zhang
,
X.
Guan
,
X.
Li
, and
Y.
Yan
,
J. Microw. Power Electromagn. Energy
56
,
58
(
2022
).
38.
M.
Laroussi
et al,
IEEE Trans. Radiat. Plasma Med. Sci.
6
,
127
(
2022
).
39.
B.-S.
Lou
,
C.-H.
Lai
,
T.-P.
Chu
,
J.-H.
Hsieh
,
C.-M.
Chen
,
Y.-M.
Su
,
C.-W.
Hou
,
P.-Y.
Chou
, and
J.-W.
Lee
,
J. Clin. Med.
8
,
1930
(
2019
).
40.
M.
Pedroni
,
S.
Morandi
,
T.
Silvetti
,
A.
Cremona
,
G.
Gittini
,
A.
Nardone
,
F.
Pallotta
,
M.
Brasca
, and
E.
Vassallo
,
J. Vac. Sci. Technol. B
36
,
01A107
(
2018
).
41.
A.
Jurov
,
N.
Škoro
,
K.
Spasić
,
M.
Modic
,
N.
Hojnik
,
D.
Vujošević
,
M.
Đurović
,
Z. L.
Petrović
, and
U.
Cvelbar
,
Eur. Phys. J. D
76
,
29
(
2022
).
42.
M. Y.
Alkawareek
,
Q. T.
Algwari
,
G.
Laverty
,
S. P.
Gorman
,
W. G.
Graham
,
D.
O’Connell
, and
B. F.
Gilmore
,
PLoS One
7
,
e44289
(
2012
).
43.
C.
Wiegand
,
S.
Fink
,
U.-C.
Hipler
,
O.
Beier
,
K.
Horn
,
A.
Pfuch
,
A.
Schimanski
, and
B.
Grünler
,
J. Wound Care
26
,
462
(
2017
).
44.
M.
Miletić
et al,
Cent. Eur. J. Phys.
12
,
160
(
2014
).
46.
J.
Kaupe
,
C.-Y. T.
Tschang
,
F.
Birk
,
D.
Coenen
,
M. H.
Thoma
, and
S.
Mitic
,
Plasma Processes Polym.
16
,
1800196
(
2019
).
47.
K.
Lotfy
,
S. M.
Khalil
, and
H. A.
El-Raheem
,
J. Theor. Appl. Phys.
14
,
37
(
2020
).
48.
Mahreen
,
A.
Ganguli
,
V. P.
Gajula
,
S.
Kar
, and
D.
Sahu
,
Rev. Sci. Instrum.
93
,
123514
(
2022
).
49.
O.
Jovanović
,
N.
Puač
, and
N.
Škoro
,
Plasma Sci. Technol.
24
,
105404
(
2022
).
50.
Atomic Spectra Database, NIST Standard Reference Database, https://www.nist.gov/pml/atomic-spectra-database (2022).
51.
S.
Kuo
,
Cold Atmospheric Plasmas: Their Use in Biology and Medicine
(
World Scientific
,
Singapore
,
2019
).
52.
Y.
Sakiyama
,
D. B.
Graves
,
H.-W.
Chang
,
T.
Shimizu
, and
G. E.
Morfill
,
J. Phys. D: Appl. Phys.
45
,
425201
(
2012
).
53.
R.
Zaplotnik
,
G.
Primc
, and
A.
Vesel
,
Appl. Sci.
11
,
2275
(
2021
).
54.
T.
Murakami
,
K.
Niemi
,
T.
Gans
,
D.
O’Connell
, and
W. G.
Graham
,
Plasma Sources Sci. Technol.
22
,
015003
(
2013
).
55.
Y.
Wu
,
L.
Bu
,
X.
Duan
,
S.
Zhu
,
M.
Kong
,
N.
Zhu
, and
S.
Zhou
,
J. Cleaner Prod.
273
,
123065
(
2020
).
56.
E.
Martines
,
Jpn. J. Appl. Phys.
59
,
SA0803
(
2020
).
57.
M.
Yusupov
,
K.
Wende
,
S.
Kupsch
,
E. C.
Neyts
,
S.
Reuter
, and
A.
Bogaerts
,
Sci. Rep.
7
,
5761
(
2017
).
58.
M.
Yusupov
,
A.
Bogaerts
,
S.
Huygh
,
R.
Snoeckx
,
A. C. T.
van Duin
, and
E. C.
Neyts
,
J. Phys. Chem. C
117
,
5993
(
2013
).
59.
E.
Stoffels
,
Y.
Sakiyama
, and
D. B.
Graves
,
IEEE Trans. Plasma Sci.
36
,
1441
(
2008
).
60.
P.
Viegas
,
E.
Slikboer
,
Z.
Bonaventura
,
O.
Guaitella
,
A.
Sobota
, and
A.
Bourdon
,
Plasma Sources Sci. Technol.
31
,
053001
(
2022
).
61.
S.
Kar
and
S.
Mukherjee
,
Phys. Plasmas
15
,
063504
(
2008
).
62.
S.
Kar
and
S.
Mukherjee
,
Pramana
81
,
35
(
2013
).
63.
L.
Han
,
S.
Patil
,
D.
Boehm
,
V.
Milosavljević
,
P. J.
Cullen
,
P.
Bourke
, and
E. G.
Dudley
,
Appl. Environ. Microbiol.
82
,
450
(
2016
).
64.
WHO/FWC/WSH/15.02
, see https://www.who.int/publications/i/item/WHO-FWC-WSH-15.02 for World Health Organization (2015).
65.
N.
Mat Saman
,
M. H.
Ahmad
, and
Z.
Buntat
,
IEEE Trans. Plasma Sci.
50
,
2110
(
2022
).
66.
K.
Barman
,
D.
Behmani
,
M.
Mudgal
,
S.
Bhattacharjee
,
R.
Rane
, and
S. K.
Nema
,
Plasma Res. Express
2
,
025007
(
2020
).
67.
D.
Mariotti
,
Y.
Shimizu
,
T.
Sasaki
, and
N.
Koshizaki
,
J. Appl. Phys.
101
,
013307
(
2007
).
68.
M.
Thiyagarajan
,
A.
Sarani
, and
C.
Nicula
,
J. Appl. Phys.
113
,
233302
(
2013
).
69.
F.
Xiaomeng
,
K.
Shin-ichi
,
K.
Yuki
,
M.
Tamio
, and
H.
Katsuhiko
,
Plasma Sci. Technol.
13
,
575
(
2011
).
70.
X.-J.
Shao
,
N.
Jiang
,
G.-J.
Zhang
, and
Z.
Cao
,
Appl. Phys. Lett.
101
,
253509
(
2012
).
71.
S.
Hofmann
,
A. F. H.
van Gessel
,
T.
Verreycken
, and
P.
Bruggeman
,
Plasma Sources Sci. Technol.
20
,
065010
(
2011
).
72.
R. F.
Boivin
and
E. E.
Scime
,
Plasma Sources Sci. Technol.
14
,
283
(
2005
).
73.
Z.
Zhang
et al,
Plasma Chem. Plasma Process.
37
,
415
(
2017
).
74.
Z.
Xu
et al,
Plasma Processes Polym.
12
,
827
(
2015
).
75.
See the supplementary material online for the image of CAPJ under antimicrobial activity evaluation, plots of applied voltage and discharge current waveform, Lissajous plot, emission spectra, and mass spectra.

Supplementary Material

You do not currently have access to this content.