Cell adhesion is of fundamental importance in cell and tissue organization and for designing cell-laden constructs for tissue engineering. Prior methods to assess cell adhesion strength for strongly adherent cells using hydrodynamic shear flow either involved the use of specialized flow devices to generate high shear stress or used simpler implementations like larger height parallel plate chambers that enable multihour cell culture but generate low wall shear stress and are, hence, more applicable for weakly adherent cells. Here, we propose a shear flow assay for adhesion strength assessment of strongly adherent cells that employs off-the-shelf parallel plate chambers for shear flow as well as simultaneous trypsin treatment to tune down the adhesion strength of cells. We implement the assay with a strongly adherent cell type and show that wall shear stress in the 0.07–7 Pa range is sufficient to dislodge the cells with simultaneous trypsin treatment. Imaging of cells over a square centimeter area allows cell morphological analysis of hundreds of cells. We show that the cell area of cells that are dislodged, on average, does not monotonically increase with wall shear stress at the higher end of wall shear stresses used and suggest that this can be explained by the likely higher resistance of high circularity cells to trypsin digestion. The adhesion strength assay proposed can be used to assess the adhesion strength of both weakly and strongly adherent cell types and has the potential to be adapted for substrate stiffness-dependent adhesion strength assessment in mechanobiology studies.

1.
M.
Abedin
and
N.
King
,
Trends Cell Biol.
20
,
734
(
2010
).
2.
B. M.
Gumbiner
,
Nat. Rev. Mol. Cell Biol.
6
,
622
(
2005
).
3.
M. L.
Taddei
et al,
J. Pathol.
226
,
380
(
2012
).
4.
A.
Mohan
et al,
Biophys. J.
115
,
853
(
2018
).
5.
J. M.
Halbleib
and
W. J.
Nelson
,
Genes Dev.
20
,
3199
(
2006
).
6.
N.
Borghi
et al,
Proc. Natl. Acad. Sci. U.S.A.
107
,
13324
(
2010
).
7.
M.
Hofer
and
M. P.
Lutolf
,
Nat. Rev. Mater.
6
,
402
(
2021
).
8.
A.
Malliri
and
J. G.
Collard
,
Curr. Opin. Cell Biol.
15
,
583
(
2003
).
9.
B. R.
Acharya
et al,
Dev. Cell
47
,
439
(
2018
).
10.
K.
Burridge
and
M.
Chrzanowska-Wodnicka
,
Annu. Rev. Cell Dev. Biol.
12
,
463
(
1996
).
11.
A. J.
Ridley
and
A.
Hall
,
Cell
70
,
389
(
1992
).
12.
S.
Yamada
and
W. J.
Nelson
,
J. Cell Biol.
178
,
517
(
2007
).
13.
L.
Blanchoin
et al,
Physiol. Rev.
94
,
235
(
2014
).
14.
R. J.
Pelham
and
Y.-l.
Wang
,
Proc. Natl. Acad. Sci. U.S.A.
94
,
13661
(
1997
).
15.
M.
Eftekharjoo
et al,
ACS Biomater. Sci. Eng.
8
,
2455
(
2022
).
16.
A. J.
Garcia
and
N. D.
Gallant
,
Cell Biochem. Biophys.
39
,
61
(
2003
).
17.
N.
Borghi
and
W.
James Nelson
,
Curr. Top. Dev. Biol.
89
,
1
(
2009
).
18.
A.
Fuhrmann
et al,
Biophys. J.
112
,
736
(
2017
).
19.
R.
Ungai-Salánki
et al,
Adv. Colloid Interface Sci.
269
,
309
(
2019
).
20.
V.
Vu
et al,
Curr. Biol.
31
,
3017
(
2021
).
21.
K.
Ishii
et al,
J. Invest. Dermatol.
124
,
939
(
2005
).
22.
L. Y.
Koo
et al,
J. Cell Sci.
115
,
1423
(
2002
).
23.
A. J.
García
,
P.
Ducheyne
, and
D.
Boettiger
,
Biomaterials
18
,
1091
(
1997
).
24.
A.
Fuhrmann
and
A. J.
Engler
,
Phys. Biol.
12
,
016011
(
2015
).
25.
A. S.
Goldstein
and
P. A.
DiMilla
,
J. Biomed. Mater. Res. Part A
67A
,
658
(
2003
).
26.
A.
Rezania
,
C. H.
Thomas
, and
K. E.
Healy
,
Ann. Biomed. Eng.
25
,
190
(
1997
).
27.
R.
Maan
et al,
Phys. Biol.
15
,
046006
(
2018
).
28.
C. W.
Visser
et al,
Biophys. J.
108
,
23
(
2015
).
29.
T. G.
van Kooten
et al,
Biomaterials
13
,
897
(
1992
).
30.
J. H.
Lee
et al,
J. Colloid Interface Sci.
230
,
84
(
2000
).
31.
E.
Martines
et al,
IEEE Trans. Nanobiosci.
3
,
90
(
2004
).
32.
G.
Truskey
and
T.
Proulx
,
Biomaterials
14
,
243
(
1993
).
33.
J.
Hümmer
et al,
Methods Mol. Biol.
2017
,
71
(
2019
).
34.
K. V.
Christ
et al,
Biomed. Microdevices
12
,
443
(
2010
).
35.
K. V.
Christ
and
K. T.
Turner
,
J. Adhes. Sci. Technol.
24
,
2027
(
2010
).
36.
H.
Lu
et al,
Anal. Chem.
76
,
5257
(
2004
).
37.
B. J.
Dubin-Thaler
et al,
Biophys. J.
86
,
1794
(
2004
).
38.
C. A.
Reinhart-King
,
M.
Dembo
, and
D. A.
Hammer
,
Biophys. J.
89
,
676
(
2005
).
39.
E. A.
Cavalcanti-Adam
et al,
Biophys. J.
92
,
2964
(
2007
).
40.
J.
Yan
et al,
Int. J. Pharma Med. Biol. Sci.
10
,
103
(
2021
).
41.
X.
Xu
et al,
Rheol. Acta
61
,
271
(
2022
).
42.
Y. A.
Cengel
and
J. M.
Cimbala
,
Fluid Mechanics: Fundamentals and Applications
, 4th ed. (
McGraw-Hill Education
, New York,
2017
).
43.
V.
Maruthamuthu
et al,
Proc. Natl. Acad. Sci. U.S.A.
108
,
4708
(
2011
).
44.
S. P.
Dumbali
et al,
J. Biomech. Eng.
139
,
101008
(
2017
).
45.
S.
Sen
and
S.
Kumar
,
Cell. Mol. Bioeng.
2
,
218
(
2009
).
46.
G.
Tarone
et al,
J. Cell Biol.
94
,
179
(
1982
).
47.
Y.
Bashirzadeh
et al,
J. Vis. Exp.
137
,
e57797
(
2018
).
48.
T.
Yeung
et al,
Cell Motil. Cytoskelet.
60
,
24
(
2005
).
You do not currently have access to this content.