Protein adsorption behavior can play a critical role in defining the outcome of a material by affecting the subsequent in vivo response to it. To date, the effect of surface properties on protein adsorption behavior has been mainly focused on surface chemistry, but research on the effect of nanoscale surface topography remains limited. In this study, the adsorption behavior of human serum albumin, immunoglobulin G, and fibrinogen in terms of the adsorbed amount and conformational changes were investigated on bare and anodized titanium (Ti) samples (40 and 60 V applied voltages). While the surface chemistry, RMS surface roughness, and arithmetic surface roughness of the anodized samples were similar, they had distinctly different nanomorphologies identified by atomic force microscopy and scanning electron microscopy, and the surface statistical parameters, surface skewness Ssk and kurtosis Sku. The Feret pore size distribution was more uniform on the 60 V sample, and surface nanostructures were more symmetrical with higher peaks and deeper pores. On the other hand, the 40 V sample surface presented a nonuniform pore size distribution and asymmetrical surface nanostructures with lower peaks and shallower pores. The amount of surface-adsorbed protein increased on the sample surfaces in the order of Ti < 40 V < 60 V with the predominant factor affecting the amount of surface-adsorbed protein being the increased surface area attained by pore formation. The secondary structure of all adsorbed proteins deviated from that of their native counterparts. While comparing the secondary structure components of proteins on anodized surfaces, it was observed that all three proteins retained more of their secondary structure composition on the surface with more uniform and symmetrical nanofeatures than the surface having asymmetrical nanostructures. Our results suggest that the nanomorphology of the peaks and outer walls of the nanotubes can significantly influence the conformation of adsorbed serum proteins, even for surfaces having similar roughness values.

1.
J.
Barberi
and
S.
Spriano
,
Materials
14
,
1590
(
2021
).
2.
G. Rh.
Owen
,
M.
Dard
, and
H.
Larjava
,
J. Biomed. Mater. Res. B
106
,
2493
(
2018
).
3.
S.
Gore
et al,
J. Biomed. Mater. Res. B
102
,
1817
(
2014
).
4.
M.
Martínez-Hernández
et al,
J. Biomed. Mater. Res. B
109
,
1017
(
2021
).
5.
Ş
Öncel
et al,
Ind. Eng. Chem. Res.
44
,
7049
(
2005
).
6.
E.
Akdoğan
and
M.
Mutlu
,
Colloids Surf. B
89
,
289
(
2012
).
7.
D.
Coglitore
,
J.-M.
Janot
, and
S.
Balme
,
Adv. Colloid Interface Sci.
270
,
278
(
2019
).
8.
9.
R. T.
Gettens
and
J. L.
Gilbert
,
J. Biomed. Mater. Res. A
81
,
465
(
2007
).
10.
D. S.
Benoit
and
K. S.
Anseth
,
Acta Biomater.
1
,
461
(
2005
).
11.
12.
B. E.
Givens
et al,
Biointerphases
12
,
02D404
(
2017
).
13.
G. P.
Rockwell
,
L. B.
Lohstreter
, and
J. R.
Dahn
,
Colloids Surf. B
91
,
90
(
2012
).
14.
15.
16.
S.
Linse
et al,
Proc. Natl. Acad. Sci. U.S.A.
104
,
8691
(
2007
).
20.
B.
Wu
et al,
Int. J. Nanomed.
17
,
1865
(
2022
).
21.
H.
Qi
et al,
Adv. Healthcare Mater.
10
,
2100994
(
2021
).
22.
23.
N.
Singh
,
Thermodynamic Adsorption Studies of Peptides on Well-Defined, Surface-Confined Polymer with Applications in Membrane Bioseparations
(
Clemson University
, South Carolina,
2007
).
24.
H. T.
Şirin
and
E.
Akdoğan
,
Gazi Univ. J. Sci. A Eng. Innovation
9
,
225
(
2022
).
25.
M.
Brugnara
, see https://imagej.nih.gov/ij/plugins/contact-angle.html for “Contact Angle: N ImageJ Plugin” (2006) [last accessed April 2, 2022).
26.
D. R.
Villarreal
,
A.
Sogal
, and
J. L.
Ong
,
J. Oral Implantol.
24
,
67
(
1998
).
28.
G. K.
Mor
et al,
J. Mater. Res.
18
,
2588
(
2003
).
29.
30.
31.
M.
Motola
et al,
Electrochem. Commun.
97
,
1
(
2018
).
32.
B.
Ohler
and
W.
Langel
,
J. Phys. Chem. C
113
,
10189
(
2009
).
33.
C.
Bayram
et al,
J. Biomed. Nanotechnol.
8
,
482
(
2012
).
34.
C.-J.
Pan
,
Y.-X.
Dong
, and
K. D.
Jandt
,
J. Biomater. Nanobiotechnol.
3
,
353
(
2012
).
35.
A.
Al-Radha
et al,
IOSR J. Dent. Med. Sci.
15
,
62
(
2016
).
36.
C.
Ottone
et al,
J. Electrochem. Soc.
161
,
D484
(
2014
).
38.
S.
Bekeschus
et al,
Clin. Plasma Med.
4
,
19
(
2016
).
39.
K.
Nakanishi
,
T.
Sakiyama
, and
K.
Imamura
,
J. Biosci. Bioeng.
91
,
233
(
2001
).
40.
B.
Alvarez
et al,
Meth. Enzymol.
473
,
117
(
2010
).
41.
E.
Migliorini
,
M.
Weidenhaupt
, and
C.
Picart
,
Biointerphases
13
,
06D303
(
2018
).
42.
P.
Thongthai
et al,
J. Biomed. Mater. Res. B
108
,
3241
(
2020
).
43.
K.
Rechendorff
et al,
Langmuir
22
,
10885
(
2006
).
44.
M. B.
Hovgaard
et al,
J. Phys. Chem. B
112
,
8241
(
2008
).
45.
A.
Dolatshahi-Pirouz
et al,
Colloids Surf. B
66
,
53
(
2008
).
46.
K.
Cai
,
J.
Bossert
, and
K. D.
Jandt
,
Colloids Surf. B
49
,
136
(
2006
).
49.
F. Y.
Oliva
,
O. R.
Cámara
, and
L. B.
Avalle
,
J. Electroanal. Chem.
633
,
19
(
2009
).
50.
B.
Jachimska
,
M.
Wasilewska
, and
Z.
Adamczyk
,
Langmuir
24
,
6866
(
2008
).
51.
52.
53.
A.
Hasan
,
G.
Waibhaw
, and
L. M.
Pandey
,
Langmuir
34
,
8178
(
2018
).
56.
Z.
Adamczyk
et al,
J. Colloid Interface Sci.
385
,
244
(
2012
).
57.
E.
Jansson
and
P.
Tengvall
,
Colloids Surf. B
35
,
45
(
2004
).
58.
C. E.
Giacomelli
,
M. G.
Bremer
, and
W.
Norde
,
J. Colloid Interface Sci.
220
,
13
(
1999
).
59.
A.
Barth
,
Biochim. Biophys. Acta. Bioenerg.
1767
,
1073
(
2007
).
60.
J.
Kong
and
S.
Yu
,
Acta Biochim. Biophys. Sin.
39
,
549
(
2007
).
61.
K.
Murayama
and
M.
Tomida
,
Biochemistry
43
,
11526
(
2004
).
62.
D.
Usoltsev
et al,
Biomolecules
10
,
606
(
2020
).
66.
C. E.
Van den Borre
et al,
J. Biomed. Mater. Res. B
110
,
1713
(
2022
).
67.
P. R. L.
Dabare
et al,
Appl. Surf. Sci.
596
,
153518
(
2022
).
68.
Y.
Ozaki
et al,
Spectroscopy.
17
,
79
(
2003
).
69.
A. W. P.
Vermeer
,
M. G. E. G.
Bremer
, and
W.
Norde
,
Biochim. Biophys. Acta Gen. Subj.
1425
,
1
(
1998
).
70.
71.
J. M.
Medley
et al,
J. Biomed. Mater. Res. B
99B
,
102
(
2011
).
72.
C.
Yongli
et al,
J. Colloid Interface Sci.
214
,
38
(
1999
).
73.
E.
Stoleru
et al,
J. Bioact. Compat. Polym.
31
,
91
(
2016
).
74.
75.
H. R.
McPherson
et al,
eLife
10
,
e68761
(
2021
).
76.
E.
Jia
et al,
Appl. Surf. Sci.
529
,
146986
(
2020
).
77.
78.
See the supplementary material online for the XPS spectra, the cross-sectional SEM images of the samples, the properties of the proteins, and the peak positions.

Supplementary Material

You do not currently have access to this content.