The current clinical standards for infected chronic wounds are oral and topical antibiotics. These strategies are problematic because antibiotic resistance can occur with prolonged use. As an alternative to clinical methods, essential oils show promise in preventing bacterial growth. Specifically, 1,8-cineole—an active component in eucalyptus oil—exhibits antifungal, anti-inflammatory, and antibacterial properties. Applying 1,8-cineole directly onto a wound is challenging, however, due to its volatile nature. To combat this issue, plasma-enhanced chemical vapor deposition (PECVD) has been established as a method to deposit a stable 1,8-cineole-derived film on model surfaces (e.g., glass and electrospun polystyrene nanofibers). The current study represents an extension of previous work, where both pulsed and continuous 1,8-cineole plasmas were used to deposit a 1,8-cineole-derived film on two commercially available wound dressings. Three surface analyses were conducted to characterize the plasma-modified dressings. First, water contact angle goniometry data demonstrated a decrease in hydrofiber wettability after treatment. Through scanning electron spectroscopy, the surface morphology of both materials did not change upon treatment. When comparing pulsed and continuous treatments, deconvolution of high-resolution C1s x-ray photoelectron spectra showed no differences in functional group retention. Importantly, the chemical compositions of treated wound dressings were different compared to untreated materials. Overall, this work seeks to elucidate how different PECVD parameters affect the surface properties of wound dressings. Understanding these parameters represents a key step toward developing alternative chronic wound therapies.

1.
S. S.
Magill
et al,
N. Engl. J. Med.
370
,
1198
(
2014
).
2.
A.
Pegalajar-Jurado
,
C. D.
Easton
,
K. E.
Styan
, and
S. L.
McArthur
,
J. Mater. Chem. B
2
,
4993
(
2014
).
3.
G.
Han
and
R.
Ceilley
,
Adv. Ther.
34
,
599
(
2017
).
4.
E. R.
Hendry
,
T.
Worthington
,
B. R.
Conway
, and
P. A.
Lambert
,
J. Antimicrob. Chemother.
64
,
1219
(
2009
).
5.
C.
Easton
,
M.
Jacob
, and
R.
Shanks
,
Polymer
50
,
3465
(
2009
).
6.
M. N.
Mann
and
E. R.
Fisher
,
ACS Appl. Mater. Interfaces
9
,
36548
(
2017
).
7.
Z.-M.
Cai
,
J.-Q.
Peng
,
Y.
Chen
,
L.
Tao
,
Y.-Y.
Zhang
,
L.-Y.
Fu
,
Q.-D.
Long
, and
X.-C.
Shen
,
J. Asian Nat. Prod. Res.
23
,
938
(
2021
).
8.
Y.
Zhang
et al,
Front. Pharmacol.
13
, 1010593 (
2022
).
9.
H. K.
Moon
,
P.
Kang
,
H. S.
Lee
,
S. S.
Min
, and
G. H.
Seol
,
J. Pharm. Pharmacol.
66
,
688
(
2014
).
10.
U. R.
Juergens
,
U.
Dethlefsen
,
G.
Steinkamp
,
A.
Gillissen
,
R.
Repges
, and
H.
Vetter
,
Respir. Med.
97
,
250
(
2003
).
11.
Y.
Wang
et al,
Front. Pharmacol.
13
,
988245
(
2022
).
12.
K. A.
Alatawi
,
D.
Ravishankar
,
P. H.
Patra
,
A. P.
Bye
,
A. R.
Stainer
,
K.
Patel
,
D.
Widera
, and
S.
Vaiyapuri
,
Cells
10
,
2616
(
2021
).
13.
L.
Li
et al,
Int. J. Clin. Exp. Med.
7
,
1721
–1729 (
2014
).
14.
D.
Kifer
,
V.
Mužinić
, and
Klarić
,
J. Antibiot.
69
,
689
(
2016
).
15.
R.
d’Agostino
,
Plasma Deposition, Treatment, and Etching of Polymers: The Treatment and Etching of Polymers
(
Elsevier
, San Diego, CA,
2012
).
16.
J. F.
Friedrich
,
J.
Friedrich
, and
J.
Friedrich
,
The Plasma Chemistry of Polymer Surfaces: Advanced Techniques for Surface Design
,
2nd ed.
(
Wiley
,
Weinheim
,
2012
).
17.
O.
Bayram
,
J. Mater. Sci.: Mater. Electron.
29
,
8564
(
2018
).
18.
M.
Abrigo
,
P.
Kingshott
, and
S. L.
McArthur
,
Biointerphases
10
,
04A301
(
2015
).
19.
P. R.
McCurdy
,
J. M.
Truitt
, and
E. R.
Fisher
,
J. Vac. Sci. Technol. A
17
,
2475
(
1999
).
20.
I.
Levchenko
,
S.
Xu
,
O.
Baranov
,
O.
Bazaka
,
E. P.
Ivanova
, and
K.
Bazaka
,
Molecules
26
,
4091
(
2021
).
21.
K. J. B.
Kus
and
E. S.
Ruiz
,
Curr. Derm. Rep.
9
,
298
(
2020
).
22.
M.
Walker
,
J. A.
Hobot
,
G. R.
Newman
, and
P. G.
Bowler
,
Biomaterials
24
,
883
(
2003
).
23.
M. J.
Waring
and
D.
Parsons
,
Biomaterials
22
,
903
(
2001
).
24.
M. J.
Hawker
,
A.
Pegalajar-Jurado
, and
E. R.
Fisher
,
Plasma Processes Polym.
12
,
846
(
2015
).
25.
R. M.
Fillion
,
A. R.
Riahi
, and
A.
Edrisy
,
Renew. Sustain. Energy Rev.
32
,
797
(
2014
).
26.
M.
Steinhart
,
Angew. Chem.
116
,
3593
(
2004
).
27.
J.
Mellor
and
S.
Boothman
,
Br. J. Commun. Nurs.
8
,
S14
(
2003
).
28.
H.-J.
Butt
,
K.
Graf
, and
M.
Kappl
,
Physics and Chemistry of Interfaces
(
Wiley
, Weinheim, Germany,
2003
).
29.
E. R.
Fisher
,
ACS Appl. Mater. Interfaces
5
,
9312
(
2013
).
30.
A.
Kumar
,
A.
Al-Jumaili
,
K.
Prasad
,
K.
Bazaka
,
P.
Mulvey
,
J.
Warner
, and
M. V.
Jacob
,
Plasma Chem. Plasma Process.
40
,
339
(
2020
).
31.
M.
Iqbal
,
D. K.
Dinh
,
Q.
Abbas
,
M.
Imran
,
H.
Sattar
, and
A.
Ul Ahmad
,
Surfaces
2
,
349
(
2019
).
You do not currently have access to this content.