This article provides a comprehensive theoretical background of electronic sum frequency generation (ESFG), a second-order nonlinear spectroscopy technique. ESFG is utilized to investigate both exposed and buried interfaces, which are challenging to study using conventional spectroscopic methods. By overlapping two incident beams at the interface, ESFG generates a beam at the sum of their frequencies, allowing for the extraction of valuable interfacial molecular information such as molecular orientation and density of states present at interfaces. The unique surface selectivity of ESFG arises from the absence of inversion symmetry at the interfaces. However, detecting weak signals from interfaces requires the ultrafast lasers to generate a sufficiently strong signal. By understanding the theoretical foundations of ESFG presented in this article, readers can gain a solid grasp of the basics of ESFG spectroscopy.

1.
T.
Ishiyama
and
A.
Morita
,
J. Phys. Chem. C
111
,
738
(
2007
).
2.
L.
Lin
,
A. U.
Chowdhury
,
Y.-Z.
Ma
,
R. L.
Sacci
,
J.
Katsaras
,
K.
Hong
,
C. P.
Collier
,
J.-M. Y.
Carrillo
, and
B.
Doughty
,
J. Phys. Chem. B
126
,
2316
(
2022
).
3.
L.
Mandelkern
,
R. G.
Alamo
, and
M. A.
Kennedy
,
Macromolecules
23
,
4721
(
1990
).
4.
S. E.
Sanders
,
H.
Vanselous
, and
P. B.
Petersen
,
J. Phys.: Condens. Matter
30
,
113001
(
2018
).
6.
R. N.
Butler
and
A. G.
Coyne
,
Chem. Rev.
110
,
6302
(
2010
).
7.
T. C.
Anglin
,
J. C.
Speros
, and
A. M.
Massari
,
J. Phys. Chem. C
115
,
16027
(
2011
).
8.
P.
Dhar
,
P. P.
Khlyabich
,
B.
Burkhart
,
S. T.
Roberts
,
S.
Malyk
,
B. C.
Thompson
, and
A. V.
Benderskii
,
J. Phys. Chem. C
117
,
15213
(
2013
).
9.
T. C.
Anglin
,
D. B. O.
Brien
, and
A. M.
Massari
,
J. Phys. Chem. C
114
,
17629
(
2010
).
10.
J. G. C.
Veinot
and
T. J.
Marks
,
Acc. Chem. Res.
38
,
632
(
2005
).
11.
F. M.
Geiger
and
G. V.
Hartland
,
J. Phys. Chem. C
126
,
14375
(
2022
).
12.
G.
Thomas
and
R.
Isaacs
,
Anaesth. Intensive Care Med.
12
,
574
(
2011
).
13.
Y.
Li
,
J.
Wang
, and
W.
Xiong
,
J. Phys. Chem. C
119
,
28083
(
2015
).
14.
A.
Kundu
,
S.
Yamaguchi
, and
T.
Tahara
,
J. Phys. Chem. Lett.
5
,
762
(
2014
).
15.
S.
Ray
and
A. G.
Shard
,
Anal. Chem.
83
,
8659
(
2011
).
16.
K. C. A.
Smith
and
C. W.
Oatley
,
Br. J. Appl. Phys.
6
,
391
(
1955
).
17.
D. E.
Cotton
,
A. P.
Moon
, and
S. T.
Roberts
,
J. Phys. Chem. C
124
,
11401
(
2020
).
18.
A. G.
Lambert
,
P. B.
Davies
, and
D. J.
Neivandt
,
Appl. Spectrosc. Rev.
40
,
103
(
2005
).
19.
T.
Joutsuka
,
T.
Hirano
,
M.
Sprik
, and
A.
Morita
,
Phys. Chem. Chem. Phys.
20
,
3040
(
2018
).
20.
F.
Jonsson
, in
Non Linear Optics-2
, 3rd ed. (
Elsevier Inc.
,
New York
,
2003
).
21.
R. W.
Boyd
, “
The nonlinear optical susceptibility
,” in
Nonlinear Optics
, 3rd ed., edited by
R. W.
Boyd
(
Academic
,
Burlington
,
2008
)
,
Chap. 1, pp.
1
67
.
22.
P. L.
Knight
,
Opt. Acta: Int. J. Opt.
32
,
1
(
1985
).
23.
J. D.
Pickering
,
M.
Bregnhøj
,
A. S.
Chatterley
,
M. H.
Rasmussen
,
K.
Strunge
, and
T.
Weidner
,
Biointerphases
17
,
011201
(
2022
).
24.
A. J.
Moad
and
G. J.
Simpson
,
J. Phys. Chem. B
108
,
3548
(
2004
).
25.
S.
Yamaguchi
and
T.
Tahara
,
J. Phys. Chem. C
119
,
14815
(
2015
).
26.
S.
Yamaguchi
and
T.
Tahara
,
J. Chem. Phys.
125
,
194711
(
2006
).
27.
S.
Yamaguchi
and
T.
Tahara
,
J. Phys. Chem. B
108
,
19079
(
2004
).
28.
C. K.
Lin
,
L.
Yang
,
M.
Hayashi
,
C. Y.
Zhu
,
Y.
Fujimura
,
Y. R.
Shen
, and
S. H.
Lin
,
J. Chin. Chem. Soc.
61
,
77
(
2014
).
29.
H.
Kaur
,
D.
Tomar
,
H.
Kaur
,
B.
Rana
,
S.
Chaudhary
, and
K. C.
Jena
, in
Sum-Frequency Generation Vibrational Spectroscopy: A Nonlinear Optical Tool to Probe the Polymer Interfaces BT - Advances in Spectroscopy Molecules to Materials
, edited by
D. K.
Singh
,
S.
Das
, and
A.
Materny
(
Springer Singapore
,
Singapore
,
2019
), pp.
39
55
.
30.
S.
Yamaguchi
and
T.
Tahara
,
J. Chem. Phys.
129
,
101102
(
2008
).
31.
S.
Dhami
,
Y.
Kumar
, and
R.
Pandey
, “Development of an electronic sum frequency generation spectrophotometer to assess the buried interfaces,”
Biointerphases
(to be published).
32.
I. V.
Stiopkin
,
H. D.
Jayathilake
,
A. N.
Bordenyuk
, and
A. V.
Benderskii
,
J. Am. Chem. Soc.
130
,
2271
(
2008
).
33.
Y. R.
Shen
,
Principles of Nonlinear Optics
(
Wiley
,
New York
,
1873
)
34.
S.
Nihonyanagi
,
J. A.
Mondal
,
S.
Yamaguchi
, and
T.
Tahara
,
Annu. Rev. Phys. Chem.
64
,
579
(
2013
).
35.
C. C.
Rich
,
K. A.
Lindberg
, and
A. T.
Krummel
,
J. Phys. Chem. Lett.
8
,
1331
(
2017
).
36.
E. G.
Moloney
,
M. S.
Azam
,
C.
Cai
, and
D. K.
Hore
,
Biointerphases
17
,
051202
(
2022
).
37.
D. B.
O’Brien
and
A. M.
Massari
,
J. Chem. Phys.
142
,
024703
(
2015
).
38.
D. B.
O’Brien
and
A. M.
Massari
,
J. Opt. Soc. Am. B
30
,
1503
(
2013
).
39.
D. B.
O’Brien
,
T. C.
Anglin
, and
A. M.
Massari
,
Langmuir
27
,
13940
(
2011
).
40.
D. E.
Cotton
and
S. T.
Roberts
,
J. Chem. Phys.
154
,
114704
(
2021
).
41.
D.
Bhattacharyya
,
P.
Dhar
,
Y.
Liu
,
P. I.
Djurovich
,
M. E.
Thompson
, and
A. V.
Benderskii
,
ACS Appl. Mater. Interfaces
12
,
26515
(
2020
).
42.
J. N.
Myers
,
X.
Zhang
,
J.
Bielefeld
,
Q.
Lin
, and
Z.
Chen
,
J. Phys. Chem. B
119
,
1736
(
2015
).
43.
W.
Sung
,
C.
Müller
,
S.
Hietzschold
,
R.
Lovrinčić
,
N. P.
Gallop
,
A. A.
Bakulin
,
S.
Nihonyanagi
, and
T.
Tahara
,
Mater. Horiz.
7
,
1348
(
2020
).
44.
R.
Pandey
,
A. P.
Moon
,
J. A.
Bender
, and
S. T.
Roberts
,
J. Phys. Chem. Lett.
7
,
1060
(
2016
).
You do not currently have access to this content.