This article discusses the challenges and potential solutions for managing wastewater sludge that contains per- and polyfluoroalkyl substances (PFAS), using the experience in Maine as a guide toward addressing the issue nationally. Traditional wastewater treatment, designed to remove excess organic waste and nutrients, does not eliminate persistent toxic pollutants like PFAS, instead partitioning the chemicals between discharged effluent and the remaining solids in sludge. PFAS chemistry, the molecular size, the alkyl chain length, fluorine saturation, the charge of the head group, and the composition of the surrounding matrix influence PFAS partitioning between soil and water. Land application of sludge, incineration, and storage in a landfill are the traditional management options. Land application of Class B sludge on agricultural fields in Maine peaked in the 1990s, totaling over 2 × 106 cu yd over a 40-year period and has contaminated certain food crops and animal forage, posing a threat to the food supply and the environment. Additional Class A EQ (Exceptional Quality) composted sludge was also applied to Maine farmland. The State of Maine banned the land application of wastewater sludge in August 2022. Most sludge was sent to the state-owned Juniper Ridge Landfill, which accepted 94 270 tons of dewatered sludge in 2022, a 14% increase over 2019. Between 2019 and 2022, the sum of perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) concentrations in sludge sent to the landfill ranged from 1.2 to 104.9 ng/g dw. In 2022, the landfill generated 71.6 × 106 l of leachate. The concentration of sum of six PFAS in the leachate increased sixfold between 2021 and 2022, reaching 2 441 ng/l. The retention of PFAS within solid-waste landfills and the potential for long-term release of PFAS through liners into groundwater require ongoing monitoring. Thermal treatment, incineration, or pyrolysis can theoretically mineralize PFAS at high temperatures, yet the strong C–F bond and reactivity of fluorine require extreme temperatures for complete mineralization. Future alternatives may include interim options such as preconditioning PFAS with nonpolar solvents prior to immobilization in landfills, removing PFAS from leachate, and interrupting the cycle of PFAS moving from landfill, via leachate, to wastewater treatment, and then back to the landfill via sludge. Long-term solutions may involve destructive technologies such as electron beam irradiation, electrochemical advanced oxidation, or hydrothermal liquefaction. The article highlights the need for innovative and sustainable solutions for managing PFAS-contaminated wastewater sludge.

1.
CWA
, “Federal Water Pollution Control Act Amendments of 1972,” Publ. Law 92-500, 18 October 1972.
2.
R. W.
Adler
,
J. C.
Landman
, and
D. M.
Cameron
,
The Clean Water Act 20 Years Later
(Island Press, Washington, D.C., 1991).
3.
EPA
, “Land application of sewage sludge: A guide for land appliers on the requirements of the federal standards for the use or disposal of sewage sludge, 40 CFR Part 503,” EPA/831-B-93-002b, 1994.
4.
J. M.
Peckenham
, “Beneficial reuse of biosolids: A review,” prepared for Maine State Planning Office and the Maine Waste Water Control Association, March 2005, 70 p.
5.
EPA
, see https://www.epa.gov/biosolids/basic-information-about-biosolids#basics for “2023 basic information about biosolids” (last accessed July 4, 2023).
6.
R.
Aro
,
U.
Eriksson
,
A.
Kärrman
,
F.
Chen
,
T.
Wang
, and
L. W. Y.
Yeung
,
ACS ES&T Water
1
,
2087
(
2021
).
7.
B.
Xu
,
S.
Liu
,
J. L.
Zhou
,
C.
Zheng
,
J.
Weifeng
,
B.
Chen
,
T.
Zhang
, and
W.
Qiu
,
J. Hazard. Mater.
412
,
125159
(
2021
).
8.
Z.
Du
,
S.
Deng
,
Y.
Bei
,
Q.
Huang
,
B.
Wang
,
J.
Huang
, and
G.
Yu
,
J. Hazard. Mater.
274
,
443
(
2014
).
9.
L.
Richter
,
A.
Cordner
, and
P.
Brown
,
Soc. Stud. Sci.
48
,
691
(
2018
).
11.
A. B.
Lindstrom
,
M. J.
Strynar
, and
E. L.
Libelo
,
Environ. Sci. Technol.
45
,
7954
(
2011
).
12.
P.
Grandjean
,
E. W.
Andersen
,
E.
Budtz-Jørgensen
,
F.
Nielsen
,
K.
Mølbak
,
P.
Weihe
, and
C.
Heilmann
,
J. Am. Med. Assoc.
307
,
391
(
2012
).
13.
C.
Looker
,
M. I.
Luster
,
A. M.
Calafat
,
V. J.
Johnson
,
G. R.
Burleson
,
F. G.
Burleson
, and
T.
Fletcher
,
Toxicol. Sci.
138
,
76
(
2014
).
14.
J. W.
Nelson
,
E. E.
Hatch
, and
T. F.
Webster
,
Environ. Health Perspect.
118
,
197
(
2010
).
15.
N.
Matilla-Santander
,
D.
Valvi
,
M.-J.
Lopez-Espinoza
,
C. B.
Manzano-salgado
,
F.
Ballester
,
J.
Ibarluzea
, and
M.
Vrijheid
,
Environ. Health Perspect.
125
,
1
(
2017
).
16.
J. Y.
Min
,
K. J.
Lee
,
J. B.
Park
, and
K. B.
Min
,
Occup. Environ. Med.
69
,
658
(
2012
).
17.
S.
Geiger
,
J.
Xiao
, and
A.
Shankar
,
Integr. Blood Pressure Control
7
,
1
(
2014
).
18.
V.
Barry
,
A.
Winquist
, and
K.
Steenland
,
Environ. Health Perspect.
121
,
1313
(
2013
).
19.
J. J.
Shearer
et al,
J. Natl. Cancer Inst.
113
,
580
(
2021
).
20.
ATSDR
, see https://www.atsdr.cdc.gov/toxprofiles/tp200.pdf for “Toxicological profile for perfluoroalkyls, draft for public comment. Atlanta, Georgia” (2018).
21.
PFAS Task Force
, see https://www1.maine.gov/pfastaskforce/materials/report/PFAS-Task-Force-Report-FINAL-Jan2020.pdf for “Managing PFAS in Maine: Final report from the Maine PFAS Task Force, January 2020.”
22.
EGAD
, see https://www.maine.gov/dep/maps-data/egad/index.html for “Maine Environmental and Geographic Analysis Database; Maine PFAS data 2007-2020” (2020).
23.
MDEP
, see https://www.maine.gov/dep/spills/publications/guidance/rags/ME-Remedial-Action-Guidelines-10-19-18cc.pdf for “Maine Remedial Action Guidelines (RAGs) for sites contaminated with hazardous substances” (2018).
24.
See https://www.mainelegislature.org/legis/bills/getPDF.asp?paper=SP0064&item=3&snum=130 for “Maine 130th Legis. 2021, Section 2.2.A” (last accessed March 9, 2023).
25.
MDEP
, see https://maine.maps.arcgis.com/apps/webappviewer/index.html?id=468a9f7ddcd54309bc1ae8ba173965c7 for “2023 interactive state map of PFAS data in soil and groundwater” (last accessed March 8, 2023).
26.
MDEP
, see https://www.maine.gov/dep/spills/topics/pfas/DW-Metrics.pdf for “2023 preliminary private drinking water well results by town as of March 6, 2023” (last accessed March 8, 2023).
27.
C.
Zimmerman
,
C.
Noblet
, and
M.
Shea
,
Maine Policy Rev.
31
,
55
(
2022
).
28.
C. L. S.
Wiseman
and
W.
Püttmann
,
Geoderma
134
,
109
(
2006
).
29.
M.
Kleber
,
P.
Sollins
, and
R.
Sutton
,
Biogeochemistry
85
,
9
(
2007
).
30.
D.
Zhao
,
J.
Cheng
,
C. D.
Vecitis
, and
M. R.
Hoffmann
,
J. Phys. Chem. A
115
,
2250
(
2011
).
31.
32.
Q.
Zhou
,
S.
Deng
,
Q.
Zhang
,
Q.
Fan
,
J.
Huang
, and
G.
Yu
,
Chemosphere
81
,
453
(
2010
).
33.
C.
Zhang
,
H.
Yan
,
F.
Li
,
X.
Hu
, and
Q.
Zhou
,
J. Hazard. Mater.
260
,
689
(
2013
).
34.
C. P.
Higgins
and
R. G.
Luthy
,
Environ. Sci. Technol.
40
,
7251
(
2006
).
35.
A.
Nickerson
,
A. C.
Maizel
,
P. R.
Kulkarni
,
D. T.
Adamson
,
J. J.
Kornuc
, and
C. P.
Higgins
,
Environ. Sci. Technol.
54
,
4952
(
2020
).
36.
F.
Xiao
,
X.
Zhang
,
L.
Penn
,
J. S.
Gulliver
, and
M. F.
Simcik
,
Environ. Sci. Technol.
45
,
10028
(
2011
).
37.
M. L.
Brusseau
,
R. H.
Anderson
, and
B.
Guo
,
Sci. Total Environ.
740
,
140017
(
2020
).
38.
S.
Deng
,
Q.
Yu
,
J.
Huang
, and
G.
Yu
,
Water Res.
44
,
5188
(
2010
).
39.
Q.
Yu
,
R.
Zhang
,
S.
Deng
,
J.
Huang
, and
G.
Yu
,
Water Res.
43
,
1150
(
2009
).
40.
T. M. H.
Nguyen
et al,
Environ. Sci. Technol.
54
,
15883
(
2020
).
41.
J. L.
Guelfo
and
C. P.
Higgins
,
Environ. Sci. Technol.
47
,
4164
(
2013
).
42.
C.
Wu
,
M. J.
Klemes
,
B.
Trang
,
W. R.
Dichtel
, and
D. E.
Helbling
,
Water Res.
182
,
115950
(
2020
).
43.
EPA
, “Biosolids recycling: Beneficial technology for a better environment,” U.S. Environmental Protection Agency, EPA 832-R-94-009, June 1994, 35 pp.
44.
MDEP
, see https://www1.maine.gov/dep/spills/topics/pfas/2020-11-12-sludge-bioash-land-application.xlsx for “2020 sludge, bioash land application sites in Maine” (accessed February 13, 2023).
45.
Andrew J
Plantinga
,
Thomas
Mauldin
, and
Ralph J
Alig
, “Land use in Maine: Determinants of past trends and projections of future changes,” USDA Report PNW-RP-511, 1999.
46.
USDA NASS
, see https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=MAINE for “2022 state agriculture overview Maine” (last accessed April 20, 2023).
47.
48.
USDA
, see https://agcensus.library.cornell.edu/census_parts/2012-maine/ for “2012 census of agriculture historical archive—Maine 1840–2012” (last accessed April 20, 2023).
49.
Ned
Beecher
,
Juliana
Beecher
,
Janine
Burke-Wells
,
M.
Lono-Batura
,
Nora
Goldstein
,
Greg
Kester
, and
Bill
Toffey
, see https://www.biosolidsdata.org for “National Biosolids Data Project: Biosolids management in the U. S. (2022)” (last accessed February 21, 2023).
50.
MDEP
, see https://www.maine.gov/dep/spills/topics/pfas/ for “2021 evaluation of licensed sludge sites” (last accessed March 8, 2023).
51.
MDEP
, “2023 Status of Maine’s PFAS soil and groundwater investigation at sludge and septage land application sites,” Report to the Committee on the Environment and Natural Resources 131st Legislature, First session, January 15, 2023.
52.
See https://legislature.maine.gov/legis/bills/getPDF.asp?paper=HP1417&item=1&snum=130 for “Maine 130th Legis. 2nd Regular Session 2022, Section 1.13.E” (last accessed March 9, 2023).
53.
George
Tchobanoglous
and
Frank
Kreith
,
Handbook of Solid Waste Management
,
2nd ed.
(
McGraw-Hill
,
New York
,
2002
).
54.
S.
Moavenzadeh Ghaznavi
,
A. J.
Flores Azua
,
D.
Kopec
,
L.
Zambrano Cruzatty
, and
O. G.
Apul
, “
Integrity of HDPE geomembranes play a critical role on permeation of per- and polyfluoroalkyl substances (PFAS) in solid waste management facilities,
” in
2023 AEESP Research & Education Conference
,
Boston, MA,
21 June 2023 (AEESP, Richmond, VA,
2023
).
55.
G.
Longendyke
,
S.
Katel
, and
Y.
Wang
,
Environ. Sci.: Processes Impacts
24
,
196
(
2022
).
56.
J.
Zhang
,
L.
Gao
,
D.
Bergmann
,
T.
Bulatovic
,
A.
Surapaneni
, and
S.
Gray
,
Sci. Total Environ.
854
,
158796
(
2023
).
57.
L. J.
Winchell
,
J. J.
Ross
,
D. A.
Brose
,
T. B.
Pluth
,
X.
Fonoll
,
J. W.
Norton
, Jr.
, and
K. Y.
Bell
,
Water Environ. Res.
94
,
e10715
(
2022
).
58.
J.
Wang
,
Z.
Lin
,
X.
He
,
M.
Song
,
P.
Westerhoff
,
K.
Doudrick
, and
D.
Hanigan
,
Environ. Sci. Technol.
56
,
5355
(
2022
).
59.
F.
Wang
,
K.
Shih
,
X.
Lu
, and
C.
Liu
,
Environ. Sci. Technol.
47
,
2621
(
2013
).
60.
F.
Xiao
,
P. C.
Sasi
,
B.
Yao
,
A.
Kubátová
,
S. A.
Golovko
,
M. Y.
Golovko
, and
D.
Soli
,
Environ. Sci. Technol. Lett.
7
,
343
(
2020
).
61.
J. D.
Krug
et al,
J. Air Waste Manage. Assoc.
72
,
256
(
2022
).
62.
M.
Altarawneh
,
M. H.
Almatarneh
, and
B. Z.
Dlugogorski
,
Chemosphere
286
,
131685
(
2022
).
63.
T.
Stoiber
,
S.
Evans
, and
O. V.
Naidenko
,
Chemosphere
260
,
127659
(
2020
).
64.
N.
Watanabe
,
M.
Takata
,
S.
Takemine
, and
K.
Yamamoto
,
Environ. Sci. Pollut. Res.
25
,
7200
(
2018
).
65.
S.
Liu
,
S.
Zhao
,
Z.
Liang
,
F.
Wang
,
F.
Sun
, and
D.
Chen
,
Sci. Total Environ.
795
,
148468
(
2021
).
66.
See https://media.defense.gov/2022/Apr/28/2002986273/-1/-1/1/TEMPORARY-PROHIBITION-ON-INC[%E2%80%A6]NG-PRE-AND-POLYFLUOROALKYL-SUBSTANCES-PFAS-APRIL-26-2022.PDF for “Temporary DOD prohibition on incineration of materials containing per- and polyfluoroalkyl substances (PFAS).”
67.
See https://www.illinois.gov/news/press-release.25014.html for “[Illinois] Gov. Pritzker signs legislation aimed at curbing pollution and reducing harmful emissions.”
68.
Y.
Chen
,
H.
Zhang
,
Y.
Liu
,
J. A.
Bowden
,
T. M.
Tolaymat
,
T. G.
Townsend
, and
H. M.
Solo-Gabriele
,
Waste Manage.
153
,
110
(
2022
).
69.
H.
Yan
,
I. T.
Cousins
,
C.
Zhang
, and
Q.
Zhou
,
Sci. Total Environ.
524–525
,
23
(
2015
).
70.
Z.
Wei
,
T.
Xu
, and
D.
Zhao
,
Environ. Sci. Water Res. Technol.
5
,
1814
(
2019
).
71.
S. J.
Smith
,
K.
Wiberg
,
P.
McCleaf
, and
L.
Ahrens
,
ACS ES&T Water
2
,
841
(
2022
).
72.
J.
Wang
,
R. K.
Niven
,
A.
Morrison
,
S. P.
Wilson
,
V.
Strezov
, and
M. P.
Taylor
,
Sci. Total Environ.
865
,
161145
(
2023
).
73.
N. M.
Robey
,
B. F.
da Silva
,
M. D.
Annable
,
T. G.
Townsend
, and
J. A.
Bowden
,
Environ. Sci. Technol.
54
,
12550
(
2020
).
74.
K. E.
Manz
et al,
J. Hazard. Mater.
442
,
129966
(
2023
).
75.
Z.
Liu
,
Z.
Chen
,
J.
Gao
,
Y.
Yu
,
Y.
Men
,
C.
Gu
, and
J.
Liu
,
Environ. Sci. Technol.
56
,
3699
(
2022
).
76.
B.
Trang
,
Y.
Li
,
X. S.
Xue
,
M.
Ateia
,
K. N.
Houk
, and
W. R.
Dichtel
,
Science
377
,
839
(
2022
).
77.
H.
Cao
,
W.
Zhang
,
C.
Wang
, and
Y.
Liang
,
Ultrason. Sonochem.
69
,
105245
(
2020
).
78.
C.
Nau-Hix
,
N.
Multari
,
R. K.
Singh
,
S.
Richardson
,
P.
Kulkarni
,
R. H.
Anderson
,
T. M.
Holsen
, and
S.
Mededovic Thagard
,
ACS ES&T Water
1
,
680
(
2021
).
79.
N.
Yang
et al,
Environ. Sci. Technol. Lett.
10
,
198
(
2023
).
80.
L.
Jiang
,
S.
Wang
,
W.
Chen
,
J.
Lin
,
X.
Yu
,
M.
Feng
, and
K.
Wan
,
Water
14
,
1684
(
2022
).
81.
S. H.
Ma
,
M. H.
Wu
,
L.
Tang
,
R.
Sun
,
C.
Zang
,
J. J.
Xiang
,
X. X.
Yang
,
X.
Li
, and
G.
Xu
,
Nucl. Sci. Tech.
28
,
137
(
2017
).
82.
K.
Londhe
,
C. S.
Lee
,
Y.
Zhang
,
S.
Grdanovska
,
T.
Kroc
,
C. A.
Cooper
, and
A. K.
Venkatesan
,
ACS ES&T Eng.
1
,
827
(
2021
).
83.
M.
Veciana
,
J.
Bräunig
,
A.
Farhat
,
M. L.
Pype
,
S.
Freguia
,
G.
Carvalho
,
J.
Keller
, and
P.
Ledezma
,
J. Hazard. Mater.
434
,
128886
(
2022
).
84.
C.
Rusinek
, see https://www.ideals.illinois.edu/items/114200 for “PFAS remediation at MSU–Fraunhofer: Electrochemical destruction in wastewater and landfill leachates using boron–doped diamond electrodes” (
2019
).
85.
S.
Sharma
,
N. P.
Shetti
,
S.
Basu
,
M. N.
Nadagouda
, and
T. M.
Aminabhavi
,
Chem. Eng. J.
430
,
132895
(
2022
).
86.
J.
Hou
,
G.
Li
,
M.
Liu
,
L.
Chen
,
Y.
Yao
,
P. H.
Fallgren
, and
S.
Jin
,
Chemosphere
287
,
132205
(
2022
).
87.
Y. G.
Kang
,
Q. T.
Birch
,
M. N.
Nadagouda
, and
D. D.
Dionysiou
,
Curr. Opin. Environ. Sci. Health
33
,
100459
(
2023
).
88.
J.
Radjenovic
and
D. L.
Sedlak
,
Environ. Sci. Technol.
49
,
11292
(
2015
).
89.
Y.
Wang
,
H.
Shi
,
C.
Li
, and
Q.
Huang
,
Environ. Sci.: Water Res. Technol.
6
,
144
(
2020
).
90.
M.
Mirabediny
,
J.
Sun
,
T. T.
Yu
,
B.
Åkermark
,
B.
Das
, and
N.
Kumar
,
Chemosphere
321
,
138109
(
2023
).
91.
W.
Zhang
and
Y.
Liang
,
J. Environ. Chem. Eng.
10
,
107092
(
2022
).
92.
A.
Garg
,
N. P.
Shetti
,
S.
Basu
,
M. N.
Nadagouda
, and
T. M.
Aminabhavi
,
Chem. Eng. J.
453
,
139964
(
2023
).
93.
L. J.
Snowden-Swan
et al, “Hydrothermal liquefaction and upgrading of municipal wastewater treatment plant sludge: A preliminary techno-economic analysis, Rev. 1,” No. PNNL-25464-Rev. 1, 2016.
94.
J.
Yu
,
A.
Nickerson
,
Y.
Li
,
Y.
Fang
, and
T. J.
Strathmann
,
Environ. Sci. Water Res. Technol.
6
,
1388
(
2020
).
95.
A.
Cordner
,
G.
Goldenman
,
L. S.
Birnbaum
,
P.
Brown
,
M. F.
Miller
,
R.
Mueller
,
S.
Patton
,
D. H.
Salvatore
, and
L.
Trasande
,
Environ. Sci. Technol.
55
,
9630
(
2021
).
96.
G.
Goldenman
,
M.
Fernandes
,
M.
Holland
,
T.
Tugran
,
A.
Nordin
,
C.
Schoumacher
, and
A.
McNeill
, “
The cost of inaction
,” in
A Socioeconomic Analysis of Environmental and Health Impacts Linked to Exposure to PFAS
(
Nordic Council of Ministers
, Copenhagen,
2019
),
You do not currently have access to this content.