Protein coronas, formed by proteins and nanomaterials, have various applications in the biomedical field. Here, large-scale simulations of protein coronas have been carried out by an efficient mesoscopic coarse-grained method with the BMW-MARTINI force field. The effects of protein concentration, size of silica nanoparticles (SNPs), and ionic strength on the formation of lysozyme-SNP coronas are investigated at the microsecond time scale. Simulations results indicate that (i) an increase in the amount of lysozyme is favorable for the conformation stability of adsorbed lysozyme on SNPs. Moreover, the formation of ringlike and dumbbell-like aggregations of lysozyme can further reduce the conformational loss of lysozyme; (ii) for a smaller SNP, the increase of protein concentration exhibits a greater effect on the adsorption orientation of lysozyme. The dumbbell-like lysozyme aggregation is unfavorable for the stability of lysozyme’s adsorption orientation; however, the ringlike lysozyme aggregation can enhance the orientation stability; (iii) the increase of ionic strength can reduce the conformation change of lysozyme and accelerate the aggregation of lysozyme during their adsorption process on SNPs. This work provides some insights into the formation of protein coronas and some valuable guidelines for the development of novel biomolecule-NP conjugates.

1.
M.
Liu
,
H.
Zhu
,
Y.
Wang
,
C.
Sevencan
, and
B. L.
Li
,
ACS Mater. Lett.
3
,
462
(
2021
).
2.
S. J.
Reddy
and
B. K.
Kumar
,
IOSR-JBB
5
,
1
(
2019
).
3.
C.
Wang
,
J.
Bai
,
P.
Tian
,
R.
Xie
,
Z.
Duan
,
Q.
Lv
, and
Y.
Tao
,
Front. Bioeng. Biotechnol.
9
,
732513
(
2021
).
4.
V.
Pareek
,
A.
Bhargava
,
V.
Bhanot
,
R.
Gupta
,
N.
Jain
, and
J.
Panwar
,
J. Nanosci. Nanotechnol.
18
,
6653
(
2018
).
5.
J.
Li
,
H.
Zeng
,
Z.
Zeng
,
Y.
Zeng
, and
T.
Xie
,
ACS Biomater. Sci. Eng.
7
,
5363
(
2021
).
6.
N.
Bertrand
,
P.
Grenier
,
M.
Mahmoudi
,
E. M.
Lima
,
E. A.
Appel
,
F.
Dormont
,
J.-M.
Lim
,
R.
Karnik
,
R.
Langer
, and
O. C.
Farokhzad
,
Nat. Commun.
8
,
777
(
2017
).
7.
J. X.
Xu
,
M.
Alom
,
R.
Yadav
, and
N. C.
Fitzkee
,
Nat. Commun.
13
,
7313
(
2022
).
8.
B.
Kharazian
,
N. L.
Hadipour
, and
M. R.
Ejtehadi
,
Int. J. Biochem. Cell Biol.
75
,
162
(
2016
).
9.
C.
Carrillo-Carrion
,
M.
Carril
, and
W. J.
Parak
,
Curr. Opin. Biotechnol.
46
,
106
(
2017
).
10.
X.
Quan
,
J.
Liu
, and
J.
Zhou
,
Curr. Opin. Colloid Interface Sci.
41
,
74
(
2019
).
11.
J. E.
Gagner
,
X.
Qian
,
M. M.
Lopez
,
J. S.
Dordick
, and
R. W.
Siegel
,
Biomaterials
33
,
8503
(
2012
).
12.
J. E.
Gagner
,
M. D.
Lopez
,
J. S.
Dordick
, and
R. W.
Siegel
,
Biomaterials
32
,
7241
(
2011
).
13.
S.
Shrivastava
,
J. H.
Nuffer
,
R. W.
Siegel
, and
J. S.
Dordick
,
Nano Lett.
12
,
1583
(
2012
).
14.
R.
Madathiparambil Visalakshan
et al,
Small
16
,
2000285
(
2020
).
15.
16.
Q.
Yu
,
L.
Zhao
,
C.
Guo
,
B.
Yan
, and
G.
Su
,
Front. Bioeng. Biotechnol.
8
,
210
(
2020
).
17.
V. P.
Zhdanov
,
Curr. Opin. Colloid Interface Sci.
41
,
95
(
2019
).
18.
H.
Zheng
,
S.-J.
Yang
,
Y.-C.
Zheng
,
Y.
Cui
,
Z.
Zhang
,
J.-Y.
Zhong
, and
J.
Zhou
,
ACS Appl. Mater. Interfaces
12
,
35676
(
2020
).
19.
M.
Luo
,
Y.
Gao
,
S.
Yang
,
X.
Quan
,
D.
Sun
,
K.
Liang
,
J.
Li
, and
J.
Zhou
,
Phys. Chem. Chem. Phys.
21
,
9342
(
2019
).
20.
L.
Ding
,
J.
Zeng
,
M.
Luo
, and
J.
Zhou
,
Adv. Mater. Interfaces
9
,
2201289
(
2022
).
21.
22.
X.
Sun
,
Z.
Feng
,
L.
Zhang
,
T.
Hou
, and
Y.
Li
,
PLoS One
9
,
e107696
(
2014
).
24.
S. J.
Marrink
,
H. J.
Risselada
,
S.
Yefimov
,
D. P.
Tieleman
, and
A. H.
De Vries
,
J. Phys. Chem. B
111
,
7812
(
2007
).
25.
L.
Monticelli
,
S. K.
Kandasamy
,
X.
Periole
,
R. G.
Larson
,
D. P.
Tieleman
, and
S.-J.
Marrink
,
J. Chem. Theory Comput.
4
,
819
(
2008
).
26.
Z.
Wu
,
Q.
Cui
, and
A.
Yethiraj
,
J. Phys. Chem. B
114
,
10524
(
2010
).
27.
Z.
Wu
,
Q.
Cui
, and
A.
Yethiraj
,
J. Phys. Chem. Lett.
2
,
1794
(
2011
).
28.
G.
Yu
,
J.
Liu
, and
J.
Zhou
,
J. Phys. Chem. B
118
,
4451
(
2014
).
29.
G.
Yu
,
J.
Liu
, and
J.
Zhou
,
AIChE J.
61
,
2035
(
2015
).
30.
G.
Yu
and
J.
Zhou
,
Phys. Chem. Chem. Phys.
18
,
23500
(
2016
).
31.
S.
Yang
,
J.
Liu
,
H.
Zheng
,
J.
Zhong
, and
J.
Zhou
,
Nanoscale
12
,
3701
(
2020
).
32.
Y.
Xie
,
W.
Gong
,
J.
Jin
,
Z.
Zhao
,
Z.
Li
, and
J.
Zhou
,
Appl. Surf. Sci.
506
,
144962
(
2020
).
33.
D.
Zhao
,
C.
Huang
,
X.
Quan
,
L.
Li
,
Y.
Wang
, and
J.
Zhou
,
Langmuir
37
,
5932
(
2021
).
34.
Z.
Xu
,
S.
Yang
,
Y.
Xie
,
H.
Yu
, and
J.
Zhou
,
Colloids Surf., B
217
,
112660
(
2022
).
35.
B.
Hess
,
C.
Kutzner
,
D.
Van Der Spoel
, and
E.
Lindahl
,
J. Chem. Theory Comput.
4
,
435
(
2008
).
36.
F. G.
Fumi
and
M. P.
Tosi
,
J. Phys. Chem. Solids
25
,
31
(
1964
).
37.
M. P.
Tosi
and
F. G.
Fumi
,
J. Phys. Chem. Solids
25
,
45
(
1964
).
38.
U.
Essmann
,
L.
Perera
,
M. L.
Berkowitz
,
T.
Darden
,
H.
Lee
, and
L. G.
Pedersen
,
J. Chem. Phys.
103
,
8577
(
1995
).
39.
C.
Czeslik
and
R.
Winter
,
Phys. Chem. Chem. Phys.
3
,
235
(
2001
).
40.
P.
Shi
,
J.
Qin
,
J.
Hu
,
Y.
Bai
, and
X.
Zan
,
Colloids Surf., B
175
,
184
(
2019
).
41.
G.
Wang
,
H.
Hou
,
S.
Wang
,
C.
Yan
, and
Y.
Liu
,
Colloids Surf., B
157
,
138
(
2017
).
42.
J. G.
Croissant
,
K. S.
Butler
,
J. I.
Zink
, and
C. J.
Brinker
,
Nat. Rev. Mater.
5
,
886
(
2020
).
43.
A. H.
Jalil
and
U.
Pyell
,
J. Phys. Chem. C
122
,
4437
(
2018
).
44.
A.
Rimola
,
D.
Costa
,
M.
Sodupe
,
J.-F.
Lambert
, and
P.
Ugliengo
,
Chem. Rev.
113
,
4216
(
2013
).
45.
F.
Carlsson
,
E.
Hyltner
,
T.
Arnebrant
,
M.
Malmsten
, and
P.
Linse
,
J. Phys. Chem. B
108
,
9871
(
2004
).
46.
K.
Kubiak
and
P. A.
Mulheran
,
J. Phys. Chem. B
113
,
12189
(
2009
).
47.
Y.
Xie
,
J.
Zhou
, and
S.
Jiang
,
J. Chem. Phys.
132
,
065101
(
2010
).
48.
H. J. C.
Berendsen
,
J. P. M.
Postma
,
W. F.
Van Gunsteren
,
A.
DiNola
, and
J. R.
Haak
,
J. Chem. Phys.
81
,
3684
(
1984
).
49.
S. O.
Yesylevskyy
,
L. V.
Schäfer
,
D.
Sengupta
, and
S. J.
Marrink
,
PLoS Comput. Biol.
6
,
e1000810
(
2010
).
50.
W.
Humphrey
,
A.
Dalke
, and
K.
Schulten
,
J. Mol. Graph.
14
,
33
(
1996
).
51.
E. F.
Pettersen
,
T. D.
Goddard
,
C. C.
Huang
,
G. S.
Couch
,
D. M.
Greenblatt
,
E. C.
Meng
, and
T. E.
Ferrin
,
J. Comput. Chem.
25
,
1605
(
2004
).
52.
X.
Liu
,
F.
Tian
,
T.
Yue
,
X.
Zhang
, and
C.
Zhong
,
Nanoscale
12
,
3029
(
2020
).
53.
Y.
Wang
,
H.
Li
,
L.
Cheng
,
J.
Zhou
, and
L.
Fu
,
Colloids Surf., B
201
,
111634
(
2021
).
54.
X.
Wu
and
G.
Narsimhan
,
Biochim. Biophys. Acta, Proteins Proteomics
1784
,
1694
(
2008
).
55.
A. A.
Vertegel
,
R. W.
Siegel
, and
J. S.
Dordick
,
Langmuir
20
,
6800
(
2004
).
56.
F.
Zhang
,
X.
Cai
,
L.
Ding
, and
S.
Wang
,
Food Hydrocoll.
111
,
106211
(
2021
).
57.
W.
Cheng
,
C.
Liu
,
T.
Tong
,
R.
Epsztein
,
M.
Sun
,
R.
Verduzco
,
J.
Ma
, and
M.
Elimelech
,
J. Membr. Sci.
559
,
98
(
2018
).
You do not currently have access to this content.