We show, via molecular simulations, that not only does cholesterol induce a lipid order, but the lipid order also enhances cholesterol localization within the lipid leaflets. Therefore, there is a strong interdependence between these two phenomena. In the ordered phase, cholesterol molecules are predominantly present in the bilayer leaflets and orient themselves parallel to the bilayer normal. In the disordered phase, cholesterol molecules are mainly present near the center of the bilayer at the midplane region and are oriented orthogonal to the bilayer normal. At the melting temperature of the lipid bilayers, cholesterol concentration in the leaflets and the bilayer midplane is equal. This result suggests that the localization of cholesterol in the lipid bilayers is mainly dictated by the degree of ordering of the lipid bilayer. We validate our findings on 18 different lipid bilayer systems, obtained from three different phospholipid bilayers with varying concentrations of cholesterol. To cover a large temperature range in simulations, we employ the Dry Martini force field. We demonstrate that the Dry and the Wet Martini (with polarizable water) force fields produce comparable results.

1.
Y.
Zhang
,
A.
Lervik
,
J.
Seddon
, and
F.
Bresme
,
Chem. Phys. Lipids
185
,
88
(
2015
).
2.
N.
Kučerka
,
M.-P.
Nieh
, and
J.
Katsaras
,
Biochim. Biophys. Acta, Biomembr.
1808
,
2761
(
2011
).
3.
Y.
Wang
,
P.
Gkeka
,
J. E.
Fuchs
,
K. R.
Liedl
, and
Z.
Cournia
,
Biochim. Biophys. Acta, Biomembr.
1858
,
2846
(
2016
).
4.
A. G.
Lee
,
Biochim. Biophys. Acta, Biomembr.
1666
,
62
(
2004
).
5.
J.
Pan
,
T. T.
Mills
,
S.
Tristram-Nagle
, and
J. F.
Nagle
,
Phys. Rev. Lett.
100
,
198103
(
2008
).
6.
M. J.
Ueda
,
T.
Ito
,
T. S.
Okada
, and
S. I.
Ohnishi
,
J. Cell Biol.
71
,
670
(
1976
).
7.
L.
Bagatolli
and
P. B.
Sunil Kumar
,
Soft Matter
5
,
3234
(
2009
).
8.
G. W.
Feigenson
,
Biochim. Biophys. Acta, Biomembr.
1788
,
47
(
2009
).
9.
X.
Zhuang
,
J. R.
Makover
,
W.
Im
, and
J. B.
Klauda
,
Biochim. Biophys. Acta, Biomembr.
1838
,
2520
(
2014
).
10.
D.
Marquardt
,
N.
Kučerka
,
S. R.
Wassall
,
T. A.
Harroun
, and
J.
Katsaras
,
Chem. Phys. Lipids
199
,
17
(
2016
).
11.
P.
Khakbaz
and
J. B.
Klauda
,
Biochim. Biophys. Acta, Biomembr.
1860
,
1489
(
2018
).
12.
D.
Marquardt
,
F. A.
Heberle
,
J. D.
Nickels
,
G.
Pabst
, and
J.
Katsaras
,
Soft Matter
11
,
9055
(
2015
).
13.
J. T.
Buboltz
and
G. W.
Feigenson
,
Biochim. Biophys. Acta, Biomembr.
1417
,
232
(
1999
).
14.
T. A.
Harroun
,
J.
Katsaras
, and
S. R.
Wassall
,
Biochemistry
47
,
7090
(
2008
).
15.
A. B.
García-Arribas
,
A.
Alonso
, and
F. M.
Goñi
,
Chem. Phys. Lipids
199
,
26
(
2016
).
16.
N.
Kucerka
,
M.
Nieh
,
J.
Pencer
,
J.
Sachs
, and
J.
Katsaras
,
Gen. Physiol. Biophys.
28
,
117
(
2009
).
17.
S. O.
Yesylevskyy
and
A. P.
Demchenko
,
Eur. Biophys. J.
41
,
1043
(
2012
).
18.
M. R.
Ali
,
K. H.
Cheng
, and
J.
Huang
,
Proc. Natl. Acad. Sci. U.S.A.
104
,
5372
(
2007
).
19.
K.
Simons
and
D.
Toomre
,
Nat. Rev. Mol. Cell Biol.
1
,
31
(
2000
).
20.
W. F. D.
Bennett
,
J. L.
MacCallum
,
M. J.
Hinner
,
S. J.
Marrink
, and
D. P.
Tieleman
,
J. Am. Chem. Soc.
131
,
12714
(
2009
).
21.
F. J.
Alvarez
,
L. M.
Douglas
, and
J. B.
Konopka
,
Eukaryot. Cell
6
,
755
(
2007
).
22.
R. F. M.
de Almeida
,
A.
Fedorov
, and
M.
Prieto
,
Biophys. J.
85
,
2406
(
2003
).
23.
M.
Aghaaminiha
,
S. A.
Ghanadian
,
E.
Ahmadi
, and
A. M.
Farnoud
,
Biochim. Biophys. Acta, Biomembr.
1862
,
183350
(
2020
).
24.
M.
Aghaaminiha
,
A. M.
Farnoud
, and
S.
Sharma
,
Soft Matter
17
,
2742
(
2021
).
25.
S. R.
Wassall
and
W.
Stillwell
,
Chem. Phys. Lipids
153
,
57
(
2008
).
26.
C.
Arnarez
,
J. J.
Uusitalo
,
M. F.
Masman
,
H. I.
Ingólfsson
,
D. H.
de Jong
,
M. N.
Melo
,
X.
Periole
,
A. H.
de Vries
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
11
,
260
(
2015
).
27.
J.
Michalowsky
,
L. V.
Schäfer
,
C.
Holm
, and
J.
Smiatek
,
J. Chem. Phys.
146
,
054501
(
2017
).
28.
K.
Pluhackova
,
S. A.
Kirsch
,
J.
Han
,
L.
Sun
,
Z.
Jiang
,
T.
Unruh
, and
R. A.
Böckmann
,
J. Phys. Chem. B
120
,
3888
(
2016
).
29.
H. I.
Ingólfsson
et al,
J. Am. Chem. Soc.
136
,
14554
(
2014
).
30.
S.
Nazemidashtarjandi
,
A.
Vahedi
, and
A. M.
Farnoud
,
Langmuir
36
,
4923
(
2020
).
31.
S.
Nazemidashtarjandi
,
V. M.
Sharma
,
V.
Puri
,
A. M.
Farnoud
, and
M. M.
Burdick
,
ACS Nano
16
,
2233
(
2022
).
32.
B.
Ramstedt
and
J. P.
Slotte
,
Biochim. Biophys. Acta, Biomembr.
1758
,
1945
(
2006
).
33.
M.
Caffrey
,
Lipid Thermotropic Phase Transition Database (LIPIDAT). User’s Guide Version 1.0
(
U.S. Department of Commerce, National Institute of Standards and Technology, Standard Reference Data Program
,
Gaithersburg, MD
,
1993
).
34.
J. R.
Silvius
,
Thermotropic Phase Transitions of Pure Lipids in Model Membranes and Their Modifications by Membrane Proteins
(
Wiley
,
New York
,
1982
).
35.
X.-M.
Li
,
J. M.
Smaby
,
M. M.
Momsen
,
H. L.
Brockman
, and
R. E.
Brown
,
Biophys. J.
78
,
1921
(
2000
).
36.
T. A.
Wassenaar
,
H. I.
Ingólfsson
,
R. A.
Böckmann
,
D. P.
Tieleman
, and
S. J.
Marrink
,
J. Chem. Theory Comput.
11
,
2144
(
2015
).
37.
M. J.
Abraham
,
T.
Murtola
,
R.
Schulz
,
S.
Páll
,
J. C.
Smith
,
B.
Hess
, and
E.
Lindahl
,
SoftwareX
1–2
,
19
(
2015
).
38.
C. M.
MacDermaid
,
H. K.
Kashyap
,
R. H.
DeVane
,
W.
Shinoda
,
J. B.
Klauda
,
M. L.
Klein
, and
G.
Fiorin
,
J. Chem. Phys.
143
,
243144
(
2015
).
39.
S. Y.
Bhide
,
Z.
Zhang
, and
M. L.
Berkowitz
,
Biophys. J.
92
,
1284
(
2007
).
40.
S. J.
Marrink
,
A. H.
de Vries
, and
A. E.
Mark
,
J. Phys. Chem. B
108
,
750
(
2004
).
41.
C. L.
Armstrong
,
D.
Marquardt
,
H.
Dies
,
N.
Kučerka
,
Z.
Yamani
,
T. A.
Harroun
,
J.
Katsaras
,
A.-C.
Shi
, and
M. C.
Rheinstädter
,
PLoS One
8
,
e66162
(
2013
).
42.
H. I.
Petrache
,
S.
Tristram-Nagle
,
K.
Gawrisch
,
D.
Harries
,
V. A.
Parsegian
, and
J. F.
Nagle
,
Biophys. J.
86
,
1574
(
2004
).
43.
P. R.
Maulik
and
G. G.
Shipley
,
Biochemistry
35
,
8025
(
1996
).
44.
A.
Liu
and
X.
Qi
,
Comput. Mol. Biosci.
02
,
78
(
2012
).
45.
S. Y.
Bhide
and
M. L.
Berkowitz
,
J. Chem. Phys.
123
,
224702
(
2005
).
46.
A. A.
Polyansky
,
P. E.
Volynsky
,
D. E.
Nolde
,
A. S.
Arseniev
, and
R. G.
Efremov
,
J. Phys. Chem. B
109
,
15052
(
2005
).
47.
P.
Niemelä
,
M. T.
Hyvönen
, and
I.
Vattulainen
,
Biophys. J.
87
,
2976
(
2004
).
48.
A.
Tsamaloukas
,
H.
Szadkowska
, and
H.
Heerklotz
,
Biophys. J.
90
,
4479
(
2006
).
49.
D.
Marquardt
et al,
Soft Matter
12
,
9417
(
2016
).
50.
Y.
Oh
and
B. J.
Sung
,
J. Phys. Chem. Lett.
9
,
6529
(
2018
).
51.
M. D.
Weiner
and
G. W.
Feigenson
,
J. Phys. Chem. B
122
,
8193
(
2018
).
52.
G.
Khelashvili
,
G.
Pabst
, and
D.
Harries
,
J. Phys. Chem. B
114
,
7524
(
2010
).
53.
S. J.
Marrink
,
A. H.
de Vries
,
Thad. A.
Harroun
,
J.
Katsaras
, and
S. R.
Wassall
,
J. Am. Chem. Soc.
130
,
10
(
2008
).
54.
See supplementary material at https://www.scitation.org/doi/suppl/10.1116/6.0002489 for simulation parameters for Dry and Wet Martini; a comparison of physical properties obtained for the Dry and Wet Martini simulations; a snapshot of equilibrium configuration of a studied lipid bilayer; estimation of melting temperature of lipid bilayers; and the relationship between log(diffusivity) of cholesterol and phospholipids and temperature.

Supplementary Material

You do not currently have access to this content.